A competition model on between three clusters and governed by directed last passage percolation is considered. We prove that coexistence, i.e. the three clusters are simultaneously unbounded, occurs with probability . When this happens, we also prove that the central cluster almost surely has a positive density on . Our results rely on three couplings, allowing to link the competition interfaces (which represent the borderlines between the clusters) to some particles in the multi-TASEP, and on recent results about collision in the multi-TASEP.
On étudie un modèle de compétition sur entre trois clusters et gouverné par la percolation dirigée de dernier passage. On montre que la coexistence, c’est à dire que les trois clusters sont infinis simultanément, a lieu avec probabilité . Dans ce cas, le cluster central admet une densité positive sur . Nos résultats reposent sur trois couplages qui permettent de relier les interfaces de compétitions (qui représentent les frontières entres les clusters) à certaines particules du multi-TASEP, ainsi qu’à des résultats récents sur la collision dans le multi-TASEP.
Keywords: last passage percolation, totally asymmetric simple exclusion process, competition interface, second class particle, coupling
@article{AIHPB_2012__48_4_973_0,
author = {Coupier, David and Heinrich, Philippe},
title = {Coexistence probability in the last passage percolation model is $6-8\log 2$},
journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
pages = {973--988},
year = {2012},
publisher = {Gauthier-Villars},
volume = {48},
number = {4},
doi = {10.1214/11-AIHP438},
mrnumber = {3052401},
zbl = {1261.60091},
language = {en},
url = {https://www.numdam.org/articles/10.1214/11-AIHP438/}
}
TY - JOUR AU - Coupier, David AU - Heinrich, Philippe TI - Coexistence probability in the last passage percolation model is $6-8\log 2$ JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2012 SP - 973 EP - 988 VL - 48 IS - 4 PB - Gauthier-Villars UR - https://www.numdam.org/articles/10.1214/11-AIHP438/ DO - 10.1214/11-AIHP438 LA - en ID - AIHPB_2012__48_4_973_0 ER -
%0 Journal Article %A Coupier, David %A Heinrich, Philippe %T Coexistence probability in the last passage percolation model is $6-8\log 2$ %J Annales de l'I.H.P. Probabilités et statistiques %D 2012 %P 973-988 %V 48 %N 4 %I Gauthier-Villars %U https://www.numdam.org/articles/10.1214/11-AIHP438/ %R 10.1214/11-AIHP438 %G en %F AIHPB_2012__48_4_973_0
Coupier, David; Heinrich, Philippe. Coexistence probability in the last passage percolation model is $6-8\log 2$. Annales de l'I.H.P. Probabilités et statistiques, Tome 48 (2012) no. 4, pp. 973-988. doi: 10.1214/11-AIHP438
[1] , and . The tasep speed process. Available at arXiv:0811.3706, 2008. | Zbl | MR
[2] and . Stochastic domination for the last passage percolation model. Markov Process. Related Fields 17 (2011) 37-48. | Zbl | MR
[3] , and . Collision probabilities in the rarefaction fan of asymmetric exclusion processes. Ann. Inst. Henri Poincaré Probab. Stat. 45 (2009) 1048-1064. | Zbl | MR | Numdam | EuDML
[4] , and . A phase transition for competition interfaces. Ann. Appl. Probab. 19 (2009) 281-317. | Zbl | MR
[5] and . Competition interfaces and second class particles. Ann. Probab. 33 (2005) 1235-1254. | Zbl | MR
[6] and . Coexistence in two-type first-passage percolation models. Ann. Appl. Probab. 15 (2005) 298-330. | Zbl | MR
[7] and . First passage percolation and a model for competing spatial growth. J. Appl. Probab. 35 (1998) 683-692. | Zbl | MR
[8] . Coexistence for Richardson type competing spatial growth models. Ann. Appl. Probab. 15 (2005) 739-747. | Zbl | MR
[9] . Geodesics in first passage percolation. Ann. Appl. Probab. 18 (2008) 1944-1969. | Zbl | MR
[10] . Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Springer-Verlag, Berlin, 1999. | Zbl | MR
[11] . Last-passage percolation with general weight distribution. Markov Process. Related Fields 12 (2006) 273-299. | Zbl | MR
[12] and . The motion of a second class particle for the TASEP starting from a decreasing shock profile. Ann. Appl. Probab. 15 (2005) 1227-1259. | Zbl
[13] . Nonequilibrium behaviour of a many particle process: Density profile and local equilibria. Z. Wahrsch. Verw. Gebiete 58 (1981) 41-53. | Zbl
[14] . Second class particles as microscopic characteristics in totally asymmetric nearest-neighbor -exclusion processes. Trans. Amer. Math. Soc. 353 (2001) 4801-4829 (electronic). | Zbl
[15] . Coupling, Stationarity, and Regeneration. Probability and its Applications (New York). Springer-Verlag, New York, 2000. | Zbl
Cité par Sources :






