Consider Glauber dynamics for the Ising model on a graph of n vertices. Hayes and Sinclair showed that the mixing time for this dynamics is at least nlog n/f(Δ), where Δ is the maximum degree and f(Δ) = Θ(Δlog2Δ). Their result applies to more general spin systems, and in that generality, they showed that some dependence on Δ is necessary. In this paper, we focus on the ferromagnetic Ising model and prove that the mixing time of Glauber dynamics on any n-vertex graph is at least (1/4 + o(1))nlog n.
Dans cet article nous étudions la dynamique de Glauber du modèle d'Ising sur un graphe fini à n sommets. Hayes et Sinclair ont montré que le temps de mélange de cette dynamique est au moins de nlog(n)f(Δ), où Δ est le degré maximum d'un sommet du graphe et f(Δ) = Θ(Δ log2(Δ)). Leur résultat s'applique également à des modèles de spins généraux où la dépendance en Δ est nécessaire. Dans ce travail nous nous concentrons sur le modèle d'Ising ferromagnétique et montrons que le temps de mélange de la dynamique de Glauber est au moins de (1/4 + o(1))n log(n) sur n'importe quel graphe à n sommets.
Keywords: Glauber dynamics, mixing time, Ising model
@article{AIHPB_2011__47_4_1020_0,
author = {Ding, Jian and Peres, Yuval},
title = {Mixing time for the {Ising} model : a uniform lower bound for all graphs},
journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
pages = {1020--1028},
year = {2011},
publisher = {Gauthier-Villars},
volume = {47},
number = {4},
doi = {10.1214/10-AIHP402},
zbl = {1274.82012},
language = {en},
url = {https://www.numdam.org/articles/10.1214/10-AIHP402/}
}
TY - JOUR AU - Ding, Jian AU - Peres, Yuval TI - Mixing time for the Ising model : a uniform lower bound for all graphs JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2011 SP - 1020 EP - 1028 VL - 47 IS - 4 PB - Gauthier-Villars UR - https://www.numdam.org/articles/10.1214/10-AIHP402/ DO - 10.1214/10-AIHP402 LA - en ID - AIHPB_2011__47_4_1020_0 ER -
%0 Journal Article %A Ding, Jian %A Peres, Yuval %T Mixing time for the Ising model : a uniform lower bound for all graphs %J Annales de l'I.H.P. Probabilités et statistiques %D 2011 %P 1020-1028 %V 47 %N 4 %I Gauthier-Villars %U https://www.numdam.org/articles/10.1214/10-AIHP402/ %R 10.1214/10-AIHP402 %G en %F AIHPB_2011__47_4_1020_0
Ding, Jian; Peres, Yuval. Mixing time for the Ising model : a uniform lower bound for all graphs. Annales de l'I.H.P. Probabilités et statistiques, Tome 47 (2011) no. 4, pp. 1020-1028. doi: 10.1214/10-AIHP402
[1] . Random walks on finite groups and rapidly mixing Markov chains. In Seminar on Probability, XVII 243-297. Lecture Notes in Math. 986. Springer, Berlin, 1983. | Zbl | MR | Numdam
[2] and . Reversible Markov chains and random walks on graphs. Available at http://www.stat.berkeley.edu/~aldous/RWG/book.html. To appear.
[3] and . A simple proof of the GHS and further inequalities. Comm. Math. Phys. 41 (1975) 33-38. | MR
[4] , and . The random geometry of equilibrium phases. In Phase Transitions and Critical Phenomena 1-142. Phase Transit. Crit. Phenom. 18. Academic Press, San Diego, CA, 2001. | MR
[5] , and . Concavity of magnetization of an Ising ferromagnet in a positive external field. J. Math. Phys. 11 (1970) 790-795. | MR
[6] and . A general lower bound for mixing of single-site dynamics on graphs. Ann. Appl. Probab. 17 (2007) 931-952. Preliminary version appeared in Proceedings of IEEE FOCS 2005 511-520. | Zbl | MR
[7] . GHS and other inequalities. Comm. Math. Phys. 35 (1974) 87-92. | MR
[8] , and . Glauber dynamics for the mean-field Ising model: Cut-off, critical power law, and metastability. Probab. Theory Related Fields 146 (2009) 223-265. | Zbl | MR
[9] , and . Markov Chains and Mixing Times. Amer. Math. Soc., Providence, RI, 2009. | Zbl | MR
[10] and . Cutoff for the Ising model on the lattice. Preprint, 2009. | Zbl
[11] . Lectures on Glauber dynamics for discrete spin models. In Lectures on Probability Theory and Statistics (Saint-Flour, 1997) 93-191. Lecture Notes in Math. 1717. Springer, Berlin, 1999. | Zbl | MR
[12] . Glauber dynamics on the cycle is monotone. Probab. Theory Related Fields 127 (2003) 177-185. | Zbl | MR
[13] . Lectures on “Mixing for Markov Chains and Spin Systems,” Univ. British Columbia, August 2005. Available at http://www.stat.berkeley.edu/~peres/ubc.pdf.
[14] and . Can extra updates delay mixing? To appear. | Zbl
[15] . Algorithms for Random Generation and Counting. Progress in Theoretical Computer Science. Birkhäuser, Boston, MA, 1993. | Zbl | MR
Cité par Sources :






