Consider a stochastic heat equation ∂tu=κ ∂xx2u+σ(u)ẇ for a space-time white noise ẇ and a constant κ>0. Under some suitable conditions on the initial function u0 and σ, we show that the quantities lim sup t→∞t-1sup x∈Rln El(|ut(x)|2) and lim sup t→∞t-1ln E(sup x∈R|ut(x)|2) are equal, as well as bounded away from zero and infinity by explicit multiples of 1/κ. Our proof works by demonstrating quantitatively that the peaks of the stochastic process x↦ut(x) are highly concentrated for infinitely-many large values of t. In the special case of the parabolic Anderson model - where σ(u)=λu for some λ>0 - this “peaking” is a way to make precise the notion of physical intermittency.
Nous considérons l'équation de la chaleur stochastique ∂tu=κ∂xx2u+σ(u)ẇ avec un bruit blanc spatio-temporel ẇ et une constante κ>0. Sous des conditions adéquates sur la condition initiale u0 et sur σ, nous montrons que les quantités lim sup t→∞t-1sup x∈Rln E(|ut(x)|2) et lim sup t→∞t-1ln E(sup x∈R|ut(x)|2) sont égales. Par ailleurs, nous les bornons inférieurement et supérieurement par des constantes strictement positives et finies dépendant explicitement de 1/κ. Nos démonstrations reposent sur la preuve quantitative de la forte concentration des pics du processus x↦ut(x) pour de grandes valeurs de t infiniment nombreuses. Dans le cas particulier du modèle d'Anderson parabolique-où σ(u)=λu pour un λ>0 - ce phénomène de pics est une façon de préciser la notion physique d'intermittence.
Keywords: stochastic heat equation, intermittency
@article{AIHPB_2010__46_4_895_0,
author = {Foondun, Mohammud and Khoshnevisan, Davar},
title = {On the global maximum of the solution to a stochastic heat equation with compact-support initial data},
journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
pages = {895--907},
year = {2010},
publisher = {Gauthier-Villars},
volume = {46},
number = {4},
doi = {10.1214/09-AIHP328},
mrnumber = {2744876},
zbl = {1210.35305},
language = {en},
url = {https://www.numdam.org/articles/10.1214/09-AIHP328/}
}
TY - JOUR AU - Foondun, Mohammud AU - Khoshnevisan, Davar TI - On the global maximum of the solution to a stochastic heat equation with compact-support initial data JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2010 SP - 895 EP - 907 VL - 46 IS - 4 PB - Gauthier-Villars UR - https://www.numdam.org/articles/10.1214/09-AIHP328/ DO - 10.1214/09-AIHP328 LA - en ID - AIHPB_2010__46_4_895_0 ER -
%0 Journal Article %A Foondun, Mohammud %A Khoshnevisan, Davar %T On the global maximum of the solution to a stochastic heat equation with compact-support initial data %J Annales de l'I.H.P. Probabilités et statistiques %D 2010 %P 895-907 %V 46 %N 4 %I Gauthier-Villars %U https://www.numdam.org/articles/10.1214/09-AIHP328/ %R 10.1214/09-AIHP328 %G en %F AIHPB_2010__46_4_895_0
Foondun, Mohammud; Khoshnevisan, Davar. On the global maximum of the solution to a stochastic heat equation with compact-support initial data. Annales de l'I.H.P. Probabilités et statistiques, Tome 46 (2010) no. 4, pp. 895-907. doi: 10.1214/09-AIHP328
[1] and . The stochastic heat equation: Feynman-Kac formula and intermittence. J. Statist. Physics 78 (1995) 1377-1402. | Zbl | MR
[2] . Distribution function inequalities for martingales. Ann. Probab. 1 (1973) 19-42. | Zbl | MR
[3] and . Parabolic Anderson problem and intermittency. In Memoires of the AMS 108. Amer. Math. Soc., Rhode Island, 1994. | Zbl | MR
[4] and . Sur l'équation de convolution μ=μ∗σ. C. R. Acad. Sci. Paris 250 (1960) 799-801. | Zbl | MR
[5] , , , and . A Minicourse on Stochastic Partial Differential Equations. D. Khoshnevisan and F. Rassoul-Agha (Eds). Lecture Notes in Mathematics 1962. Springer, Berlin, 2009. | MR
[6] and . Some non-linear s.p.d.e.'s that are second order in time. Electron. J. Probab. 8 (2003). Paper no. 1, 1-21 (electronic). | Zbl | MR
[7] and . White noise driven SPDEs with reflection. Probab. Theory Related Fields 95 (1993) 1-24. | Zbl | MR
[8] and . Intermittency and nonlinear parabolic stochastic partial differential equations. Preprint, 2008. | Zbl | MR
[9] , and . A local time correspondence for stochastic partial differential equations. Preprint, 2008. | MR
[10] and . On the stochastic Burgers' equation in the real line. Ann. Probab. 27 (1999) 782-802. | Zbl | MR
[11] . Replica Bethe ansatz studies of two-dimensional interfaces with quenched random impurities. Nuclear Phys. B 290 (1987) 582-602. | MR
[12] , and . Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56 (1986) 889-892. | Zbl
[13] and . Kinetic roughening of growing surfaces. In Solids Far from Equilibrium: Growth, Morphology, and Defects 479-582. C. Godrèche (Ed.). Cambridge Univ. Press, Cambridge, 1991.
[14] . On the support of solutions to the heat equation with noise. Stochastics and Stoch. Reports 37 (1991) 225-245. | Zbl | MR
[15] and . The compact support property for solutions to the heat equation with noise. Probab. Theory Related Fields 93 (1992) 325-358. | Zbl | MR
[16] . Two contrasting properties of solutions for one-dimensional stochastic partial differential equations. Canad. J. Math. 46 (1994) 415-437. | Zbl | MR
[17] . An introduction to stochastic partial differential equations. In École d'été de probabilités de Saint-Flour XIV, 1984 265-439. Lecture Notes in Math. 1180. Springer, Berlin, 1986. | Zbl | MR
Cité par Sources :






