This paper deals with homogenization of second order divergence form parabolic operators with locally stationary coefficients. Roughly speaking, locally stationary coefficients have two evolution scales: both an almost constant microscopic one and a smoothly varying macroscopic one. The homogenization procedure aims to give a macroscopic approximation that takes into account the microscopic heterogeneities. This paper follows [Probab. Theory Related Fields (2009)] and improves this latter work by considering possibly degenerate diffusion matrices.
Nous étudions l'homogénéisation d'opérateurs paraboliques du second ordre sous forme divergence à coefficients localement stationnaires. Ces coefficients présentent deux échelles d'évolution: une évolution microscopique presque constante et une évolution macroscopique régulière. La théorie de l'homogénéisation consiste à donner une approximation macroscopique de l'opérateur initial qui tient compte des hétérogénéités microscopiques. Cet article fait suite à [Probab. Theory Related Fields (2009)] et généralise ce dernier en considérant des matrices de diffusion pouvant dégénérer.
Keywords: homogenization, random medium, degenerate diffusion, locally stationary environment
@article{AIHPB_2009__45_4_981_0,
author = {Rhodes, R\'emi},
title = {Homogenization of locally stationary diffusions with possibly degenerate diffusion matrix},
journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
pages = {981--1001},
year = {2009},
publisher = {Gauthier-Villars},
volume = {45},
number = {4},
doi = {10.1214/08-AIHP190},
mrnumber = {2572160},
zbl = {1207.60029},
language = {en},
url = {https://www.numdam.org/articles/10.1214/08-AIHP190/}
}
TY - JOUR AU - Rhodes, Rémi TI - Homogenization of locally stationary diffusions with possibly degenerate diffusion matrix JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2009 SP - 981 EP - 1001 VL - 45 IS - 4 PB - Gauthier-Villars UR - https://www.numdam.org/articles/10.1214/08-AIHP190/ DO - 10.1214/08-AIHP190 LA - en ID - AIHPB_2009__45_4_981_0 ER -
%0 Journal Article %A Rhodes, Rémi %T Homogenization of locally stationary diffusions with possibly degenerate diffusion matrix %J Annales de l'I.H.P. Probabilités et statistiques %D 2009 %P 981-1001 %V 45 %N 4 %I Gauthier-Villars %U https://www.numdam.org/articles/10.1214/08-AIHP190/ %R 10.1214/08-AIHP190 %G en %F AIHPB_2009__45_4_981_0
Rhodes, Rémi. Homogenization of locally stationary diffusions with possibly degenerate diffusion matrix. Annales de l'I.H.P. Probabilités et statistiques, Tome 45 (2009) no. 4, pp. 981-1001. doi: 10.1214/08-AIHP190
[1] and . Homogenization of a diffusion with locally periodic coefficients. In Séminaire de Probabilités XXXVIII 363-392. Lecture Notes in Math. 1857. Springer, Berlin, 2005. | Zbl | MR
[2] , and . Asymptotic Methods in Periodic Media. North Holland, Amsterdam, 1978. | MR
[3] and . Stochastic homogenization of quasilinear PDEs with a spatial degeneracy. Asymptot. Anal. 61 (2009) 61-90. | Zbl | MR
[4] . Dirichlet Forms and Markov Processes. North-Holland, Amsterdam, 1980. | Zbl | MR
[5] and . Homogenization of periodic linear degenerate PDEs. J. Funct. Anal. 255 2462-2487. | Zbl | MR
[6] and .Limit Theorems for Stochastic Processes. Grundlehren der Mathematischen Wissenschaft 288. Springer, Berlin, 1987. | Zbl | MR
[7] , and .Homogenization of Differential Operators and Integral Functionals. Springer, Berlin, 1994. | Zbl | MR
[8] .Controlled Diffusion Processes. Springer, New York, 1980. | Zbl | MR
[9] and .Introduction to the Theory of (Nonsymmetric) Dirichlet Forms. Universitext. Springer, Berlin, 1992. | Zbl | MR
[10] . Homogenization of diffusion processes in Random Fields. Cours de l'école doctorale, Ecole polytechnique, 1994. Available at http://www.ceremade.dauphine.fr/~olla/pubolla.html.
[11] and . Homogenization of a bond diffusion in a locally ergodic random environment. Stochastic Process. Appl. 109 (2004) 317-326. | Zbl | MR
[12] . On homogenization of space time dependent random flows. Stochastic Process. Appl. 117 (2007) 1561-1585. | Zbl | MR
[13] . Diffusion in a locally stationary random environment. Probab. Theory Related Fields 143 (2009) 545-568. | Zbl | MR
[14] . Diffusion semi-groups corresponding to uniformly elliptic divergence form operators. In Séminaires de Probabilités XXII 316-347. Lecture Notes in Math. 1321. Springer, Berlin, 1988. (Section B 35 (1999) 121-141.) | Zbl | MR | Numdam
[15] . Forward-Backward martingale decomposition and compactness results for additive functionals of stationary ergodic Markov processes. Ann. Inst. H. Poincaré Probab. Statist. 35 (1999) 121-141. | Zbl | MR | Numdam
Cité par Sources :






