We study the finite projective planes with linear programming models. We give a complete description of the convex hull of the finite projective planes of order . We give some integer linear programming models whose solution are, either a finite projective (or affine) plane of order , or a -arc.
@article{RO_2008__42_3_285_0,
author = {Maurras, Jean-Fran\c{c}ois and Nedev, Roumen},
title = {On the convex hull of projective planes},
journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
pages = {285--289},
year = {2008},
publisher = {EDP Sciences},
volume = {42},
number = {3},
doi = {10.1051/ro:2008023},
mrnumber = {2444487},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ro:2008023/}
}
TY - JOUR AU - Maurras, Jean-François AU - Nedev, Roumen TI - On the convex hull of projective planes JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2008 SP - 285 EP - 289 VL - 42 IS - 3 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ro:2008023/ DO - 10.1051/ro:2008023 LA - en ID - RO_2008__42_3_285_0 ER -
%0 Journal Article %A Maurras, Jean-François %A Nedev, Roumen %T On the convex hull of projective planes %J RAIRO - Operations Research - Recherche Opérationnelle %D 2008 %P 285-289 %V 42 %N 3 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ro:2008023/ %R 10.1051/ro:2008023 %G en %F RO_2008__42_3_285_0
Maurras, Jean-François; Nedev, Roumen. On the convex hull of projective planes. RAIRO - Operations Research - Recherche Opérationnelle, Tome 42 (2008) no. 3, pp. 285-289. doi: 10.1051/ro:2008023
[1] and , Enveloppe convexe des hyperplans d'un espace affine fini, avec Olivier Anglada. RAIRO-Oper. Res. 37 (2003) 213-219. | Zbl | MR | Numdam
[2] , http://cgm.cs.mcgill.ca/ avis/C/lrs.html.
[3] and , A pivoting algorithm for convex hulls and vertex enumeration of arrankements and polyhedra. Discrete Comput. Geom. 8 (1992) 295-313. | Zbl | MR
[4] and Pór, 0-1 polytopes with many facets, Adv. Math. 161 (2001) 209-228. | Zbl | MR
[5] and , The nonexistence of certain finite projective planes. Can. J. Math. 1 (1949) 88-93. | Zbl | MR
[6] and , Symmetric Hadamard matrices of order 36. Report 70-WSK-02, TH Eindhoven, July (1970). | Zbl | MR
[7] , www.zib.de/Optimization/Software/porta.
[8] , http://cs.mcgill.ca/ fukuda/soft/cdd.
[9] , Computing Techniques for the Construction and Analysis of Block Designs1976).
[10] , On a problem in combinations. Camb. Dublin Math. J. 2 (1847) 191-204.
[11] , The Search for a Finite Projective Plane of Order 10. Am. Math. Mon. 98 (1991) 305-318. | Zbl | MR
[12] , Projective embeddings of small Steiner triple systems. Ann. Discrete Math. 7 (1980) 151-173. | Zbl | MR
[13] , and , Small Steiner triple systems and their properties. Ars Combinatoria 15 (1983) 3-110. | Zbl | MR
[14] , An exemple of dual polytopes in the unit hypercube. Ann. Discrete Math. 1 (1977) 391-392. | Zbl | MR
[15] , The Line Polytope of a finite Affine Plane. Discrete Math. 115 (1993) 283-286. | Zbl | MR
[16] , , and , The double description method, in H.W. Kuhn and A.W. Tucker, Eds., Contributions to theory of games, Vol. 2, Princeton University Press, Princeton (1953). | Zbl | MR
[17] , and , Complete classification of the triad systems on fifteen elements. Mem. Nat. Acad. Sci. U.S.A. 14, 2nd memoir (1919) 1-89.
Cité par Sources :






