In this paper, which is an extension of [4], we first show the existence of solutions to a class of Min Sup problems with linked constraints, which satisfy a certain property. Then, we apply our result to a class of weak nonlinear bilevel problems. Furthermore, for such a class of bilevel problems, we give a relationship with appropriate d.c. problems concerning the existence of solutions.
Keywords: $\operatorname{Min}\operatorname{Sup}$ problems, variational convergence, bilevel programming, d.c. programming
@article{RO_2008__42_2_87_0,
author = {Aboussoror, Abdelmalek and Mansouri, Abdelatif},
title = {Existence of solutions to weak nonlinear bilevel problems via {MinSup} and d.c. problems},
journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
pages = {87--103},
year = {2008},
publisher = {EDP Sciences},
volume = {42},
number = {2},
doi = {10.1051/ro:2008012},
mrnumber = {2431394},
zbl = {1151.49010},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ro:2008012/}
}
TY - JOUR AU - Aboussoror, Abdelmalek AU - Mansouri, Abdelatif TI - Existence of solutions to weak nonlinear bilevel problems via MinSup and d.c. problems JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2008 SP - 87 EP - 103 VL - 42 IS - 2 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ro:2008012/ DO - 10.1051/ro:2008012 LA - en ID - RO_2008__42_2_87_0 ER -
%0 Journal Article %A Aboussoror, Abdelmalek %A Mansouri, Abdelatif %T Existence of solutions to weak nonlinear bilevel problems via MinSup and d.c. problems %J RAIRO - Operations Research - Recherche Opérationnelle %D 2008 %P 87-103 %V 42 %N 2 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ro:2008012/ %R 10.1051/ro:2008012 %G en %F RO_2008__42_2_87_0
Aboussoror, Abdelmalek; Mansouri, Abdelatif. Existence of solutions to weak nonlinear bilevel problems via MinSup and d.c. problems. RAIRO - Operations Research - Recherche Opérationnelle, Tome 42 (2008) no. 2, pp. 87-103. doi: 10.1051/ro:2008012
[1] and , Existence of Solutions to Two-Level Optimization Problems with Nonunique Lower-Level Solutions. J. Math. Anal. Appl. 254 (2001) 348-357. | Zbl | MR
[2] , Weak Bilevel Programming Problems: Existence of Solutions. Adv. Math. Res. 1 (2002) 83-92. | Zbl | MR
[3] and , Weak linear bilevel programming problems: existence of solutions via a penalty method. J. Mat. Anal. Appl. 304 (2005) 399-408. | Zbl | MR
[4] and , Sufficient conditions for Min Sup problems and application to bilevel programs, in Proc CIRO'05, IV Conférence Internationale en Recherche Opérationnelle, Théorie et Applications 1 (2005) 99-107.
[5] and , Applied Nonlinear Analysis1984). | Zbl | MR
[6] , Variational Convergences for Functions and Operators. Pitman, Boston (1984). | Zbl | MR
[7] , , , and , Non-Linear Parametric Optimization. Akademie-Verlag, Berlin (1982). | Zbl
[8] and , Su un Tipo di Convergenza Variazionale. Atti Accad. Naz. Lincei Sci. Fi. Mat. Natur. 58 (1975) 842-850. | Zbl | MR
[9] , Annotated bibliography on bilevel programming and mathematical programs with equilibrium constraints. Optimization 52 (2003) 333-359. | Zbl | MR
[10] and Zolezzi, Well-Posed Optimization Problems. Lect. Notes in Mathematics. Springer-Verlag, Berlin. 1543 (1993). | Zbl | MR
[11] , A linear Max-Min problem. Math. Program. 5 (1973) 169-188. | Zbl | MR
[12] and , Topological existence and stability for Min-Sup problems. J. Math. Anal. Appl. 151 (1990) 164-180. | Zbl | MR
[13] and , Semicontinuities of marginal functions in a sequential setting. Optimization 24 (1994) 241-252. | Zbl | MR
[14] and , Approximate Solutions for Two-Level Optimization Problems, in Trends in Mathematical Optimization, International Series of Numerical Mathematics, edited by K. Hoffman, J.-B. Hiriart-Urruty, C. Lemarechal and J. Zowe, Birkhäuser Verlag, Basel 84 (1988) 181-196. | Zbl | MR
[15] and , On Strict -Solutions for Two-Level Optimization Problem, in Operations Research Proceedings of the International Conference on Operations Research 90, Vienna, edited by W. Buhler, G. Feichtinger, F. Hartl, F.J. Radermacher and P. Stahly, Springer-Verlag, Berlin (1992) 165-172. | Zbl | MR
[16] , and , Existence theorem of equilibrium points in Stackelberg games with constraints. Optimization 18 (1987) 857-866. | Zbl | MR
[17] , Caractérisation des minima locaux des fonctions de la classe D.C., Technical Note, University of Dijon (1987).
[18] and An, Convex analysis approach to d.c. programming: theory, algorithms and applications. Acta Mathematica Vietnamica 22 (1997) 289-355. | Zbl | MR
[19] , Convex analysis. Princeton University Press, Princeton, NJ (1970). | Zbl | MR
[20] and , Necessary Conditions for Min-Max Problems and algorithms by a relaxation procedure. IEEE Transactions on Automatic Control: AC-25(1) (1980) 62-66. | Zbl | MR
Cité par Sources :





