In this paper, we study the differentiability of the trajectories of the logarithmic barrier algorithm for a nonlinear program when the set of the Karush-Kuhn-Tucker multiplier vectors is empty owing to the fact that the constraint qualifications are not satisfied.
@article{RO_2008__42_2_157_0,
author = {Afia, A. El and Benchakroun, A. and Dussault, J.-P. and Yassini, K. El},
title = {Asymptotic analysis of the trajectories of the logarithmic barrier algorithm without constraint qualifications},
journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
pages = {157--198},
year = {2008},
publisher = {EDP Sciences},
volume = {42},
number = {2},
doi = {10.1051/ro:2008008},
mrnumber = {2431398},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ro:2008008/}
}
TY - JOUR AU - Afia, A. El AU - Benchakroun, A. AU - Dussault, J.-P. AU - Yassini, K. El TI - Asymptotic analysis of the trajectories of the logarithmic barrier algorithm without constraint qualifications JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2008 SP - 157 EP - 198 VL - 42 IS - 2 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ro:2008008/ DO - 10.1051/ro:2008008 LA - en ID - RO_2008__42_2_157_0 ER -
%0 Journal Article %A Afia, A. El %A Benchakroun, A. %A Dussault, J.-P. %A Yassini, K. El %T Asymptotic analysis of the trajectories of the logarithmic barrier algorithm without constraint qualifications %J RAIRO - Operations Research - Recherche Opérationnelle %D 2008 %P 157-198 %V 42 %N 2 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ro:2008008/ %R 10.1051/ro:2008008 %G en %F RO_2008__42_2_157_0
Afia, A. El; Benchakroun, A.; Dussault, J.-P.; Yassini, K. El. Asymptotic analysis of the trajectories of the logarithmic barrier algorithm without constraint qualifications. RAIRO - Operations Research - Recherche Opérationnelle, Tome 42 (2008) no. 2, pp. 157-198. doi: 10.1051/ro:2008008
[1] , , and , Asymptotic Analysis of the trajectories of the logarithmic barrier Algogarith without differentiable objective function, IJPAM 9 (2003) 99-123. | Zbl | MR
[2] afia, Comportement de la barrière logarithmique au voisinage d'une solution dégénérée. Thèse de doctorat, Université de Sherbrooke, Sherbrooke (1999).
[3] and , Penalty functions, Newton's method, and quadratic Programming. J. Optim. Theor. Appl. 58 (1988) 377-381. | Zbl | MR
[4] , Numerical Stability and Efficiency of Penality Algorithms. 32 (1995) 296-317. | Zbl | MR
[5] and , Programming under Nonlinear Constraints by Unconstrained Minimization: A Primal-Dual Method, Technical Paper RACTR-96, Research Analysis Corporation, Mc Lean, Va. (1963).
[6] and , Nonlinear Programming: Sequential Unconstrained Minimization Techniques, SIAM, Philadelphia (1990). | Zbl | MR
[7] , Extremum problems with inequalities as subsidiary conditions, in: Studies and essays: Courant anniversary volume, Interscience, New York (1948) 187-204. | Zbl | MR
[8] and , Non-Linear Programming, in Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, edited by J. Neyman, University of California Press, Berkeley (1951) 481-493. | Zbl | MR
[9] , Convergence Bounds For Nonlinear Programming Algorithms. Math. Program. 8 (1975) 251-271. | Zbl | MR
Cité par Sources :





