Clique family inequalities , form an intriguing class of valid inequalities for the stable set polytopes of all graphs. We prove firstly that their Chvátal-rank is at most , which provides an alternative proof for the validity of clique family inequalities, involving only standard rounding arguments. Secondly, we strengthen the upper bound further and discuss consequences regarding the Chvátal-rank of subclasses of claw-free graphs.
@article{RO_2007__41_3_289_0,
author = {P\^echer, Arnaud and Wagler, Annegret K.},
title = {A note on the {Chv\'atal-rank} of clique family inequalities},
journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
pages = {289--294},
year = {2007},
publisher = {EDP Sciences},
volume = {41},
number = {3},
doi = {10.1051/ro:2007022},
mrnumber = {2348003},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ro:2007022/}
}
TY - JOUR AU - Pêcher, Arnaud AU - Wagler, Annegret K. TI - A note on the Chvátal-rank of clique family inequalities JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2007 SP - 289 EP - 294 VL - 41 IS - 3 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ro:2007022/ DO - 10.1051/ro:2007022 LA - en ID - RO_2007__41_3_289_0 ER -
%0 Journal Article %A Pêcher, Arnaud %A Wagler, Annegret K. %T A note on the Chvátal-rank of clique family inequalities %J RAIRO - Operations Research - Recherche Opérationnelle %D 2007 %P 289-294 %V 41 %N 3 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ro:2007022/ %R 10.1051/ro:2007022 %G en %F RO_2007__41_3_289_0
Pêcher, Arnaud; Wagler, Annegret K. A note on the Chvátal-rank of clique family inequalities. RAIRO - Operations Research - Recherche Opérationnelle, Tome 41 (2007) no. 3, pp. 289-294. doi: 10.1051/ro:2007022
[1] , Étude des stables dans les graphes quasi-adjoints. Ph.D. thesis, Univ. Grenoble (1981).
[2] , and, Chvátal closures for mixed integer programming problems. Math. Program. 47 (1990) 155-174. | Zbl
[3] and, Claw-free graphs VI. The structure of quasi-line graphs. manuscript (2004).
[4] , Edmonds polytopes and a hierarchy of combinatorial problems. Discrete Math. 4 (1973) 305-337. | Zbl
[5] , On certain polytopes associated with graphs 18 (1975) 138-154. | Zbl
[6] , and, On cutting-plane proofs in combinatorial optimization. Linear Algebra Appl. 114/115 (1989) 455-499. | Zbl
[7] ,, and, Circular one matrices and the stable set polytope of quasi-line graphs. Lect. Notes Comput. Sci. 3509 (2005) 291-305. | Zbl
[8] and, On stable set polyhedra for -free graphs. J. Comb. Theory B 31 (1981) 313-326. | Zbl
[9] , Outline of an algorithm for integer solutions to linear programs. Bull. Amer. Math. Soc. 64 (1958) 27-278. | Zbl
[10] ,,, and, On non-rank facets of the stable set polytope of claw-free graphs and circulant graphs. Math. Methods Oper. Res. 59 (2004) 25-35 | Zbl
[11] , On the Stable Set Polytope for Quasi-Line Graphs, Special issue on stability problems. Discrete Appl. Math. 132 (2003) 185-201. | Zbl
[12] and, Almost all webs are not rank-perfect 105 (2006) 311-328. | Zbl
[13] , On the Stable Set Polytope of Claw-free Graphs. Ph.D. thesis, EPF Lausanne (2005).
Cité par Sources :






