Let and be two probability measures on the real line and let be a lower semicontinuous function on the plane. The mass transfer problem consists in determining a measure whose marginals coincide with and , and whose total cost is minimum. In this paper we present three algorithms to solve numerically this Monge-Kantorovitch problem when the commodity being shipped is one-dimensional and not necessarily confined to a bounded interval. We illustrate these numerical methods and determine the convergence rate.
@article{RO_2006__40_1_1_0,
author = {Dubuc, Serge and Kagabo, Issa},
title = {Numerical solutions of the mass transfer problem},
journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
pages = {1--17},
year = {2006},
publisher = {EDP Sciences},
volume = {40},
number = {1},
doi = {10.1051/ro:2006011},
mrnumber = {2248419},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ro:2006011/}
}
TY - JOUR AU - Dubuc, Serge AU - Kagabo, Issa TI - Numerical solutions of the mass transfer problem JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2006 SP - 1 EP - 17 VL - 40 IS - 1 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ro:2006011/ DO - 10.1051/ro:2006011 LA - en ID - RO_2006__40_1_1_0 ER -
%0 Journal Article %A Dubuc, Serge %A Kagabo, Issa %T Numerical solutions of the mass transfer problem %J RAIRO - Operations Research - Recherche Opérationnelle %D 2006 %P 1-17 %V 40 %N 1 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ro:2006011/ %R 10.1051/ro:2006011 %G en %F RO_2006__40_1_1_0
Dubuc, Serge; Kagabo, Issa. Numerical solutions of the mass transfer problem. RAIRO - Operations Research - Recherche Opérationnelle, Tome 40 (2006) no. 1, pp. 1-17. doi: 10.1051/ro:2006011
[1] and, Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables. Washington, D.C. (1964). | Zbl
[2] and, Duality and an algorithm for a class of continuous transportation problems. Math. Oper. Res. 9 (1984) 222-231. | Zbl
[3] and, Linear Programming in Infinite-Dimensional Spaces. Theory and Application. John Wiley & Sons, Chichester (1987). | Zbl | MR
[4] , Mémoire sur les déblais et les remblais des systèmes continus ou discontinus 181-208. | JFM
[5] , Le problème géométrique des déblais et remblais. Gauthier-Villars, Paris (1928). | JFM | Numdam
[6] and, Déplacement de matériel continu unidimensionnel à moindre coût. RAIRO Rech. Oper., 20 (1986) 139-161. | Zbl | Numdam
[7] , Sur les tableaux de corrélation dont les marges sont données. Ann. Univ. Lyon 14 (1951) 53-77. | Zbl
[8] , An efficient implementation of the network simplex method. Netflow in Pisa (Pisa, 1983). Math. Program. Stud. 26 (1986) 83-111. | Zbl
[9] , The distribution of a product from several sources to numerous localities. J. Math. Phys. 20 (1941) 224-230. | JFM
[10] , Masstabinvariante Korrelations-theorie. Schr. Math. Inst. Univ. Berlin 5 (1940) 181-233. | JFM
[11] , On the translocation of masses. Doklady Akad. Nauk. SSSR 37 (1942) 199-201. | Zbl
[12] , Duality theorems for marginal problems. Z. Wahrsch. Verw. Gebiete 67 (1984) 399-432. | Zbl
[13] and, The Problem of Mass Transfer with a Discontinuous Cost Function and the Mass Statement of the Duality for Convex Extremal Problems. Uspehi Mat. Nauk. 34 (1979) 3-68. | Zbl
[14] , Mémoire sur la théorie des déblais et des remblais. Mém. Math. Phys. Acad. Royale Sci., Paris (1781) 666-704.
[15] and, Solution of some transportation problems with relaxed or additional constraints SIAM J. Control Optim. 32 (1994), 673-689. | Zbl
[16] , Inequalities for distributions with given marginals Ann. Prob. 8 (1980) 814-827. | Zbl
Cité par Sources :





