We present a regularization method to approach a solution of the pessimistic formulation of ill-posed bilevel problems. This allows to overcome the difficulty arising from the non uniqueness of the lower level problems solutions and responses. We prove existence of approximated solutions, give convergence result using Hoffman-like assumptions. We end with objective value error estimates.
@article{RO_2006__40_1_19_0,
author = {Bergounioux, Maitine and Haddou, Mounir},
title = {A regularization method for ill-posed bilevel optimization problems},
journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
pages = {19--35},
year = {2006},
publisher = {EDP Sciences},
volume = {40},
number = {1},
doi = {10.1051/ro:2006009},
mrnumber = {2248420},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ro:2006009/}
}
TY - JOUR AU - Bergounioux, Maitine AU - Haddou, Mounir TI - A regularization method for ill-posed bilevel optimization problems JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2006 SP - 19 EP - 35 VL - 40 IS - 1 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ro:2006009/ DO - 10.1051/ro:2006009 LA - en ID - RO_2006__40_1_19_0 ER -
%0 Journal Article %A Bergounioux, Maitine %A Haddou, Mounir %T A regularization method for ill-posed bilevel optimization problems %J RAIRO - Operations Research - Recherche Opérationnelle %D 2006 %P 19-35 %V 40 %N 1 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ro:2006009/ %R 10.1051/ro:2006009 %G en %F RO_2006__40_1_19_0
Bergounioux, Maitine; Haddou, Mounir. A regularization method for ill-posed bilevel optimization problems. RAIRO - Operations Research - Recherche Opérationnelle, Tome 40 (2006) no. 1, pp. 19-35. doi: 10.1051/ro:2006009
[1] and, Asymptotic cones and functions in optimization and variational inequalities. Springer Monographs in Mathematics. Springer-Verlag, New York (2003). | Zbl | MR
[2] and, Characterizations of error bounds for lower semicontinuous functions on metric spaces. ESAIM: COCV 10 (2004) 409-425. | Zbl | Numdam
[3] and, On primal-dual stability in convex optimization. J. Convex Anal. 3 (1996) 309-327. | Zbl
[4] and, Perturbation analysis of optimization problems. Springer Series in Operations Research, Springer-Verlag, New York (2000). | Zbl | MR
[5] ,, and, A bilevel model for toll optimization on a multicommodity transportation network. Transportation Sci. 35 (2001) 1-14. | Zbl
[6] , Foundations of bilevel programming, in Nonconvex optimization and its applications. Kluwer Acad. Publ., Dordrecht (2002). | Zbl | MR
[7] , and, On a class of bilevel programs, in Nonlinear optimization and related topics, (Erice, 1998). Appl. Optim. 36 (2000) 183-206. | Zbl
[8] and, Error bounds for convex inequality systems, in Generalized convexity, generalized monotonicity: recent results (Luminy, 1996). Nonconvex Optim. Appl. 27 (1998) 75-110. | Zbl
[9] , Abadie's constraint qualification, metric regularity, and error bounds for differentiable convex inequalities. SIAM J. Optim. 7 (1997) 966-978. | Zbl
[10] and, New results on approximate solutions in two-level optimization. Optimization 20 (1989) 819-836. | Zbl
[11] and, Regularizations for two-level optimization problems. Advances in optimization. Lect. Notes Econ. Math. 382 (1992) 239-255. | Zbl
[12] and, A bilevel programming approach to Price Setting in: Decision and Control in Management Science, in Essays in Honor of Alain Haurie, edited by G. Zaccour. Kluwer Academic Publishers (2002) 97-117.
[13] and, Global error bounds with fractional exponents. Math. Program. Ser. B 88 (2000) 357-370. | Zbl
[14] , and, D.C. approach to bilevel bilinear programming problem: application in telecommunication pricing, in Optimization and optimal control (Ulaanbaatar, 2002). Ser. Comput. Oper. Res. 1 (2003) 211-231. | Zbl
[15] and, On error bounds for lower semicontinuous functions. Math. Program. Ser. A (2002). | Zbl | MR
[16] , The lower semicontinuity of optimal solution sets. J. Math. Anal. Appl. 207 (1997) 240-254. | Zbl
Cité par Sources :






