An efficient new hybrid CG-method as convex combination of DY and CD and HS algorithms
RAIRO. Operations Research, Tome 56 (2022) no. 6, pp. 4047-4056

In this paper, we proposed a new hybrid conjugate gradient algorithm for solving unconstrained optimization problems as a convex combination of the Dai-Yuan algorithm, conjugate-descent algorithm, and Hestenes-Stiefel algorithm. This new algorithm is globally convergent and satisfies the sufficient descent condition by using the strong Wolfe conditions. The numerical results show that the proposed nonlinear hybrid conjugate gradient algorithm is efficient and robust.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/ro/2022200
Classification : 49M37, 65K05, 90C06
Keywords: Unconstrained optimization problem, hybrid conjugate gradient method, strong Wolfe line search, sufficient descent condition
@article{RO_2022__56_6_4047_0,
     author = {Hallal, Amina and Belloufi, Mohammed and Sellami, Badreddine},
     title = {An efficient new hybrid {CG-method} as convex combination of {DY} and {CD} and {HS} algorithms},
     journal = {RAIRO. Operations Research},
     pages = {4047--4056},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {6},
     doi = {10.1051/ro/2022200},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2022200/}
}
TY  - JOUR
AU  - Hallal, Amina
AU  - Belloufi, Mohammed
AU  - Sellami, Badreddine
TI  - An efficient new hybrid CG-method as convex combination of DY and CD and HS algorithms
JO  - RAIRO. Operations Research
PY  - 2022
SP  - 4047
EP  - 4056
VL  - 56
IS  - 6
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2022200/
DO  - 10.1051/ro/2022200
LA  - en
ID  - RO_2022__56_6_4047_0
ER  - 
%0 Journal Article
%A Hallal, Amina
%A Belloufi, Mohammed
%A Sellami, Badreddine
%T An efficient new hybrid CG-method as convex combination of DY and CD and HS algorithms
%J RAIRO. Operations Research
%D 2022
%P 4047-4056
%V 56
%N 6
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2022200/
%R 10.1051/ro/2022200
%G en
%F RO_2022__56_6_4047_0
Hallal, Amina; Belloufi, Mohammed; Sellami, Badreddine. An efficient new hybrid CG-method as convex combination of DY and CD and HS algorithms. RAIRO. Operations Research, Tome 56 (2022) no. 6, pp. 4047-4056. doi: 10.1051/ro/2022200

[1] A. B. Abubakara, P. Kumama, M. Malik and A. H. Ibrahim, A hybrid conjugate gradient based approach for solving unconstrained optimization and motion control problems. Math. Comput. Simul. 201 (2022) 640–657.

[2] N. Andrei, Another hybrid conjugate gradient algorithm for unconstrained optimization. Numer. Algorithms 47 (2008) 143–156.

[3] N. Andrei, An unconstrained optimization test functions collection. Adv. Model. Optim. 10 (2008) 147–161.

[4] N. Andrei, New hybrid conjugate gradient algorithms for unconstrained optimization. Encycl. Optim. (2009) 2560–2571.

[5] A. B. Abubakar, P. Kumam, M. Malik, P. Chaipunya and A. H. Ibrahim, A hybrid FR-DY conjugate gradient algorithm for unconstrained optimization with application in portfolio selection. AIMS Math. 6 (2021) 6506–6527.

[6] A. B. Abubakar, M. Malik, P. Kumam, H. Mohammed, M. Sun, A. H. Ibrahim and A. I. Kiri, A Liu-Storey-type conjugate gradient method for unconstrained minimization problem with application in motion control. J. King Saud Univ. Sci. 3 (2022) 101923.

[7] Y. H. Dai and Y. Yuan, A nonlinear conjugate gradient method with a strong global convergence property. SIAM J. Optim. 10 (1999) 177–182.

[8] Y. H. Dai and L. Z. Liao, New conjugacy conditions and related nonlinear conjugate gradient methods. Appl. Math. Optim. 43 (2001) 87–101.

[9] Y. H. Dai, J. Y. Han, G. H. Liu, D. F. Sun, X. Yin and Y. Yuan, Convergence properties of nonlinear conjugate gradient methods. SIAM J. Optim. 10 (1999) 348–358.

[10] J. Deepho, A. B. Abubabar, M. Malik and L. A. K. Argyros, Solving unconstrained optimization problems via hybrid CD-DY conjugate gradient methods with applications. J. Comput. Appl. Math. 405 (2022) 113823.

[11] S. S. Djordjevic, New Hybrid Conjugate GradientMethod as a Convex Combination of FR and PRP Methods. Filomat 30 (2016) 3083–3100.

[12] S. S. Djordjevic, New Hybrid Conjugate Gradient Method as a Convex Combination of LS and CD methods. Filomat 31 (2017) 1813–1825.

[13] S. S. Djordjevic, New hybrid conjugate gradient method as a convex combination of HS and FR conjugate gradient methods. J. Appl. Math. Comput. 2 (2018) 366–378.

[14] E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance profiles. Math. Program. 91 (2002) 201–213.

[15] R. Fletcher, Practical methods of optimization, 2nd edition. A Wiley-Interscience Publication. John Wiley and Sons, Inc NY, USA (1987).

[16] R. Fletcher and C. Reeves, Function minimization by conjugate gradients. Comput. J. 7 (1964) 149–154.

[17] W. W. Hager and H. Zhang, Survey of nonlinear conjugate gradient methods. Pacific J. Optim. 2 (2006) 35–58.

[18] M. R. Hestenes and E. L. Stiefel, Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand. 49 (1952) 409–436.

[19] A. H. Ibrahim, P. Kumam, A. Kamandi and A. B. Abubakar, An efficient hybrid conjugate gradient method for unconstrained optimization. Optim. Methods Softw. (2022).

[20] M. Jamil and X. S. Yang, A Literature Survey of Benchmark Functions For Global Optimization Problems. Int. J. Math. Model. Numer. Optim. 4 (2013) 150–194.

[21] Y. Liu and C. Storey, Efficient generalized conjugate gradient algorithms. Part 1: Theory J. Optim. Theory Appl. 69 (1991) 129–137.

[22] J. Liu and S. Li, New hybrid conjugate gradient method for unconstrained optimization. Appl. Math. Comput. 245 (2014) 36–43.

[23] M. Malik, A. B. Abubakar, I. M. Sulaiman, M. Mamat, S. S. Abas and S. Sukono, A new three-term conjugate gradient method for unconstrained optimization with applications in portfolio selection and robotic motion control. Part 1: Theory J. Optim. Theory Appl. 51 (2021).

[24] E. Polak and G. Ribière, Note sur la convergence de mé thodes de directions conjugués. Revue Francaise d’Informatique et de Recherche Opérationnelle 16 (1969) 35–43.

[25] B. T. Polyak, The conjugate gradient method in extreme problems. USSR Comput. Math. Math. Phys. 9 (1969) 94–112.

[26] M. J. D. Powell, Restart procedures of the conjugate gradient method. Math. Program. 2 (1977) 241–254.

[27] B. Sellami, M. Belloufi and Y. Chaib, Globally convergece of nonlinear conjugate gradient method for unconstrainted optimization. RAIRO:RO (2017).

[28] P. Wolfe, Convergence conditions for Descent methods. II : Some correct. SIAM Rev. 13 (1971) 185–188.

Cité par Sources :