Fix-and-optimize metaheuristics for minmax regret binary integer programming problems under interval uncertainty
RAIRO. Operations Research, Tome 56 (2022) no. 6, pp. 4281-4301

The Binary Integer Programming problem (BIP) is a mathematical optimization problem, with linear objective function and constraints, on which the domain of all variables is {0, 1}. In BIP, every variable is associated with a determined cost coefficient. The Minmax regret Binary Integer Programming problem under interval uncertainty (M-BIP) is a generalization of BIP in which the cost coefficient associated to the variables is not known in advance, but are assumed to be bounded by an interval. The objective of M-BIP is to find a solution that possesses the minimum maximum regret among all possible solutions for the problem. In this paper, we show that the decision version of M-BIP is Σ 2 p -complete. Furthermore, we tackle M-BIP by both exact and heuristic algorithms. We extend three exact algorithms from the literature to M-BIP and propose two fix-and-optimize heuristic algorithms. Computational experiments, performed on the Minmax regret Weighted Set Covering problem under Interval Uncertainties (M-WSCP) as a test case, indicates that one of the exact algorithms outperforms the others. Furthermore, it shows that the proposed fix-and-optimize heuristics, that can be easily employed to solve any minmax regret optimization problem under interval uncertainty, are competitive with ad-hoc algorithms for the M-WSCP.

DOI : 10.1051/ro/2022198
Classification : 68R01, 90C11, 90C17, 90C47, 90C59
Keywords: Minmax regret, interval uncertainty, binary integer programming, fix-and-optimize, metaheuristics
@article{RO_2022__56_6_4281_0,
     author = {Carvalho, Iago A. and Noronha, Thiago F. and Duhamel, Christophe},
     title = {Fix-and-optimize metaheuristics for minmax regret binary integer programming problems under interval uncertainty},
     journal = {RAIRO. Operations Research},
     pages = {4281--4301},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {6},
     doi = {10.1051/ro/2022198},
     mrnumber = {4523953},
     zbl = {1553.90035},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2022198/}
}
TY  - JOUR
AU  - Carvalho, Iago A.
AU  - Noronha, Thiago F.
AU  - Duhamel, Christophe
TI  - Fix-and-optimize metaheuristics for minmax regret binary integer programming problems under interval uncertainty
JO  - RAIRO. Operations Research
PY  - 2022
SP  - 4281
EP  - 4301
VL  - 56
IS  - 6
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2022198/
DO  - 10.1051/ro/2022198
LA  - en
ID  - RO_2022__56_6_4281_0
ER  - 
%0 Journal Article
%A Carvalho, Iago A.
%A Noronha, Thiago F.
%A Duhamel, Christophe
%T Fix-and-optimize metaheuristics for minmax regret binary integer programming problems under interval uncertainty
%J RAIRO. Operations Research
%D 2022
%P 4281-4301
%V 56
%N 6
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2022198/
%R 10.1051/ro/2022198
%G en
%F RO_2022__56_6_4281_0
Carvalho, Iago A.; Noronha, Thiago F.; Duhamel, Christophe. Fix-and-optimize metaheuristics for minmax regret binary integer programming problems under interval uncertainty. RAIRO. Operations Research, Tome 56 (2022) no. 6, pp. 4281-4301. doi: 10.1051/ro/2022198

[1] H. Aissi, C. Bazgan and D. Vanderpooten, Complexity of the min–max and min–max regret assignment problems. Oper. Res. Lett. 33 (2005) 634–640. | MR | Zbl | DOI

[2] H. Aissi, C. Bazgan and D. Vanderpooten, Complexity of the min-max (regret) versions of cut problems, in International Symposium on Algorithms and Computation. Springer (2005) 789–798. | MR | Zbl

[3] H. Aissi, C. Bazgan and D. Vanderpooten, Min-max and min-max regret versions of combinatorial optimization problems: A survey. Eur. J. Oper. Res. 197 (2009) 427–438. | MR | Zbl | DOI

[4] R. Anand, D. Aggarwal and V. Kumar, A comparative analysis of optimization solvers. J. Stat. Manag. Syst. 20 (2017) 623–635.

[5] L. Assunção, T. F. De Noronha, A. C. Santos and R. C. De Andrade, A linear programming based heuristic for robust optimization problems: a case study on solving the restricted robust shortest path problem, in Matheuristics 2014–5th International Workshop on Model-Based Metaheuristics. Hambourg, Alemagne (2014) 8.

[6] L. Assunção, A. C. Santos, T. F. Noronha and R. Andrade, On the finite optimal convergence of logic-based benders’ decomposition in solving 0–1 min-max regret optimization problems with interval costs, in International Symposium on Combinatorial Optimization. Springer (2016) 1–12. | MR | Zbl

[7] L. Assunção, T. F. Noronha, A. C. Santos and R. Andrade, A linear programming based heuristic framework for min-max regret combinatorial optimization problems with interval costs. Comput. Oper. Res. 81 (2017) 51–66. | MR | Zbl | DOI

[8] I. Averbakh and V. Lebedev, Interval data minmax regret network optimization problems. Discrete Appl. Math. 138 (2004) 289–301. | MR | Zbl | DOI

[9] I. Averbakh and V. Lebedev, On the complexity of minmax regret linear programming. Eur. J. Oper. Res. 160 (2005) 227–231. | MR | Zbl | DOI

[10] I. Averbakh, On the complexity of a class of combinatorial optimization problems with uncertainty. Math. Program. 90 (2001) 263–272. | MR | Zbl | DOI

[11] I. Averbakh, Complexity of robust single facility location problems on networks with uncertain edge lengths. Discrete Appl. Math. 127 (2003) 505–522. | MR | Zbl | DOI

[12] E. Balas and A. Ho, Set covering algorithms using cutting planes, heuristics, and subgradient optimization: a computational study, in Combinatorial Optimization. Springer (1980) 37–60. | MR | Zbl

[13] J. E. Beasley, Or-library: distributing test problems by electronic mail. J. Oper. Res. Soc. 41 (1990) 1069–1072. | DOI

[14] J. F. Benders, Partitioning procedures for solving mixed-variables programming problems. Numer. Math. 4 (1962) 238–252. | MR | Zbl | DOI

[15] A. Ben-Tal and A. Nemirovski, Robust solutions of linear programming problems contaminated with uncertain data. Math. Program. 88 (2000) 411–424. | MR | Zbl | DOI

[16] D. Bertsimas and M. Sim, The price of robustness. Oper. Res. 52 (2004) 35–53. | MR | Zbl | DOI

[17] E. Buluc, M. Peker, B. Y. Kara and M. Dora, Covering vehicle routing problem: application for mobile child friendly spaces for refugees. OR Spectr. (2021) 1–24.

[18] I. A. Carvalho, On the statistical evaluation of algorithmic’s computational experimentation with infeasible solutions. Inf. Process. Lett. 143 (2019) 24–27. | MR | Zbl | DOI

[19] I. A. Carvalho, T. F. Noronha, C. Duhamel and L. F. M. Vieira, A scenario based heuristic for the robust shortest path tree problem, in VIII Conference on Manufacturing, Modelling, Management & Control (2016) 443–448.

[20] I. A. Carvalho, T. F. Noronha, C. Duhamel, L. F. Vieira and V. F. Dos Santos, A fix-and-optimize heuristic for the minmax regret shortest path arborescence problem under interval uncertainty. Int. Trans. Oper. Res. (2021). | MR | Zbl

[21] S. Ceria, P. Nobili and A. Sassano, Set covering problem, in Annotated Bibliographies in Combinatorial Optimization, Edited by S. Martello and F. Maffioli. Wiley (1997) 415–428. | Zbl

[22] A. A. Coco, A. C. Santos and T. F. Noronha, Senario-based heuristics with path-relinking for the robust set covering problem. in Proceedings of the XI Metaheuristics International Conference (MIC) (2015) 1–6.

[23] A. A. Coco, A. C. Santos and T. F. Noronha, Coupling scenario-based heuristics to exact methods for the robust weighted set covering problem with interval data, in VIII Conference on Manufacturing, Modelling, Management & Control (2016) 455–460.

[24] A. A. Coco, A. C. Santos and T. F. Noronha, Formulation and algorithms for the robust maximal covering location problem. Electron. Notes Discrete Math. 64 (2018) 145–154. | MR | Zbl | DOI

[25] E. Conde, A branch and bound algorithm for the minimax regret spanning arborescence. J. Glob. Optim. 37 (2007) 467–480. | MR | Zbl | DOI

[26] W. Cook, M. Hartmann, R. Kannan and C. Mcdiarmid, On integer points in polyhedra. Combinatorica 12 (1992) 27–37. | MR | Zbl | DOI

[27] N. K. Dastjerd and K. Ertogral, A fix-and-optimize heuristic for the integrated fleet sizing and replenishment planning problem with predetermined delivery frequencies. Comput. Ind. Eng. 127 (2019) 778–787. | DOI

[28] D. Degel and P. Lutter, A Robust Formulation of the Uncertain Set Covering Problem. Working paper, Bochum (2013).

[29] V. G. Deineko and G. J. Woeginger, Pinpointing the complexity of the interval min–max regret knapsack problem. Discrete Optim. 7 (2010) 191–196. | MR | Zbl | DOI

[30] Á. P. Dorneles, O. C. De Araújo and L. S. Buriol, A fix-and-optimize heuristic for the high school timetabling problem. Comput. Oper. Res. 52 (2014) 29–38. | MR | Zbl | DOI

[31] A. Dolgui and S. Kovalev, Min–max and min–max (relative) regret approaches to representatives selection problem. 4OR 10 (2012) 181–192. | MR | Zbl | DOI

[32] J. Edmonds, Covers and packings in a family of sets. Bull. Am. Math. Soc. 68 (1962) 494–499. | MR | Zbl | DOI

[33] M. Fischetti, D. Salvagnin and A. Zanette, A note on the selection of benders’ cuts. Math. Program. 124 (2010) 175–182. | MR | Zbl | DOI

[34] M. Friedman, The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 32 (1937) 675–701. | JFM | DOI

[35] F. Furini, M. Iori, S. Martello and M. Yagiura, Heuristic and exact algorithms for the interval min-max regret knapsack problem. INFORMS J. Comput. 27 (2015) 392–405. | MR | Zbl | DOI

[36] S. Garcia and F. Herrera, An extension on “statistical comparisons of classifiers over multiple data sets” for all pairwise comparisons. J. Mach. Learn. Res. 9 (2008) 2677–2694. | Zbl

[37] V. Gintner, N. Kliewer and L. Suhl, Solving large multiple-depot multiple-vehicle-type bus scheduling problems in practice. OR Spectr. 27 (2005) 507–523. | Zbl | DOI

[38] P. Guo, W. Cheng, Y. Wang and N. Boysen, Gantry crane scheduling in intermodal rail-road container terminals. Int. J. Prod. Res. 56 (2018) 5419–5436. | DOI

[39] O. E. Karaşan, M. C. Pinar and H. Yaman, The robust shortest path problem with interval data, Tech. Rep., Bilkent University, Department of Industrial Engineering (2001).

[40] R. M. Karp, Reducibility among combinatorial problems, in Complexity of computer computations. Springer (1972) 85–103. | MR | Zbl | DOI

[41] A. Kasperski and P. Zieliński, Complexity of the robust weighted independent set problems on interval graphs. Optim. Lett. 9 (2015) 427–436. | MR | Zbl | DOI

[42] A. Kasperski and P. Zieliński, An approximation algorithm for interval data minmax regret combinatorial optimization problems. Inf. Process. Lett. 97 (2006) 177–180. | MR | Zbl | DOI

[43] A. Kasperski and P. Zieliński, Robust discrete optimization under discrete and interval uncertainty: A survey, in Robustness Analysis in Decision Aiding, Optimization, and Analytics. Springer (2016) 113–143. | MR

[44] P. Kouvelis and G. Yu, Robust discrete optimization and its applications, In Vol. 14 of Nonconvex Optimization and its Applications. Springer (1997). | MR | Zbl

[45] V. Lebedev and I. Averbakh, Complexity of minimizing the total flow time with interval data and minmax regret criterion. Discrete Appl. Math. 154 (2006) 2167–2177. | MR | Zbl | DOI

[46] R. Montemanni, J. Barta, M. Mastrolilli and L. M. Gambardella, The robust traveling salesman problem with interval data. Transp. Sci. 41 (2007) 366–381. | DOI

[47] P. Nemenyi, Distribution-free multiple comparisons. Biometrics 18 (1962) 263. | MR

[48] J. C. Lang and Z.-J. M. Shen, Fix-and-optimize heuristics for capacitated lot-sizing with sequence-dependent setups and substitutions. Eur. J. Oper. Res. 214 (2011) 595–605. | Zbl | DOI

[49] X. Li, Q. Lu, Y. Dong and D. Tao, Sce: A manifold regularized set-covering method for data partitioning. IEEE Trans. Neural Netw. Learn. Syst. 29 (2017) 1760–1773. | MR | DOI

[50] C. Papadimitriou, Computational Complexity, Theoretical computer science. Addison-Wesley (1994). | MR | Zbl

[51] J. Pereira and I. Averbakh, The robust set covering problem with interval data. Ann. Oper. Res. 207 (2013) 1–19. | MR | Zbl | DOI

[52] S. S. Shapiro and M. B. Wilk, An analysis of variance test for normality (complete samples). Biometrika 52 (1965) 591–611. | MR | Zbl | DOI

[53] L. J. Stockmeyer, The polynomial-time hierarchy. Theor. Comput. Sci. 3 (1976) 1–22. | MR | Zbl | DOI

[54] A. M. Turhan and B. Bilgen, Mixed integer programming based heuristics for the patient admission scheduling problem. Comput. Oper. Res. 80 (2017) 38–49. | MR | Zbl | DOI

[55] H.-I. Yu, T.-C. Lin and B.-F. Wang, Improved algorithms for the minmax-regret 1-center and 1-median problems. ACM Trans. Algorithms (TALG) 4 (2008) 36. | MR | Zbl

Cité par Sources :