Multi-objectives optimization and convolution fuzzy C-means: control of diabetic population dynamic
RAIRO. Operations Research, Tome 56 (2022) no. 5, pp. 3245-3256

The optimal control models proposed in the literature to control a population of diabetics are all single-objective which limits the identification of alternatives and potential opportunities for different reasons: the minimization of the total does not necessarily imply the minimization of different terms and two patients from two different compartments may not support the same intensity of exercise or the same severity of regime. In this work, we propose a multi-objectives optimal control model to control a population of diabetics taking into account the specificity of each compartment such that each objective function involves a single compartment and a single control. In addition, the Pontryagin’s maximum principle results in expansive control that devours all resources because of max-min operators and the control formula is very complex and difficult to assimilate by the diabetologists. In our case, we use a multi-objectives heuristic method, NSGA-II, to estimate the optimal control based on our model. Since the objective functions are conflicting, we obtain the Pareto optimal front formed by the non-dominated solutions and we use fuzzy C-means to determine the important main strategies based on a typical characterization. To limit human intervention, during the control period, we use the convolution operator to reduce hyper-fluctuations using kernels with different size. Several experiments were conducted and the proposed system highlights four feasible control strategies capable of mitigating socio-economic damages for a reasonable budget.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/ro/2022142
Classification : 90C20, 90C29, 90C90, 93E20
Keywords: Diabetes, optimal control, multi-objectives optimization, Non-dominated Sorting Genetic Algorithm II (NSGA-II), fuzzy C-means, kernel convolution
@article{RO_2022__56_5_3245_0,
     author = {El Moutaouakil, Karim and El Ouissari, Abdellatif and Hicham, Baizri and Saliha, Chellak and Cheggour, Mouna},
     title = {Multi-objectives optimization and convolution fuzzy {C-means:} control of diabetic population dynamic},
     journal = {RAIRO. Operations Research},
     pages = {3245--3256},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {5},
     doi = {10.1051/ro/2022142},
     mrnumber = {4479860},
     zbl = {1507.90162},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2022142/}
}
TY  - JOUR
AU  - El Moutaouakil, Karim
AU  - El Ouissari, Abdellatif
AU  - Hicham, Baizri
AU  - Saliha, Chellak
AU  - Cheggour, Mouna
TI  - Multi-objectives optimization and convolution fuzzy C-means: control of diabetic population dynamic
JO  - RAIRO. Operations Research
PY  - 2022
SP  - 3245
EP  - 3256
VL  - 56
IS  - 5
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2022142/
DO  - 10.1051/ro/2022142
LA  - en
ID  - RO_2022__56_5_3245_0
ER  - 
%0 Journal Article
%A El Moutaouakil, Karim
%A El Ouissari, Abdellatif
%A Hicham, Baizri
%A Saliha, Chellak
%A Cheggour, Mouna
%T Multi-objectives optimization and convolution fuzzy C-means: control of diabetic population dynamic
%J RAIRO. Operations Research
%D 2022
%P 3245-3256
%V 56
%N 5
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2022142/
%R 10.1051/ro/2022142
%G en
%F RO_2022__56_5_3245_0
El Moutaouakil, Karim; El Ouissari, Abdellatif; Hicham, Baizri; Saliha, Chellak; Cheggour, Mouna. Multi-objectives optimization and convolution fuzzy C-means: control of diabetic population dynamic. RAIRO. Operations Research, Tome 56 (2022) no. 5, pp. 3245-3256. doi: 10.1051/ro/2022142

[1] P. Bogacki and L. F. Shampine, A 3 (2) pair of Runge-Kutta formulas. Appl. Math. Lett. 2 (1989) 321–325. | MR | Zbl | DOI

[2] A. Boutayeb and A. Chetouani, A population model of diabetes and pre-diabetes. Int. J. Comput. Math. 84 (2007) 57–66. | MR | Zbl | DOI

[3] A. Boutayeb, E. H. Twizell, K. Achouayb and A. Chetouani, A mathematical model for the burden of diabetes and its complications. Biomed. Eng. Online 3 (2004) 1–8. | DOI

[4] A. Boutayeb, A. Chetouani, A. Achouyab and E. H. Twizell, A non-linear population model of diabetes mellitus. J. Appl. Math. Comput. 21 (2006) 127–139. | MR | Zbl | DOI

[5] W. E. Boyce and R. C. Di Prima, Elementary Differential Equations and Boundary Value Problems. Wiley, New York (2009). | Zbl | MR

[6] A. A. M. Daud, C. Q. Toh and S. Saidun, Development and analysis of a mathematical model for the population dynamics of diabetes mellitus during pregnancy. Math. Models Comput. Simul. 12 (2020) 620–630. | MR | DOI

[7] K. Deb, Multi-objective optimisation using evolutionary algorithms: An introduction. In: Multi-objective evolutionary optimisation for product design and manufacturing. Springer, London (2011) 3–34. | DOI

[8] M. Derouich, A. Boutayeb, W. Boutayeb and M. Lamlili, Optimal control approach to the dynamics of a population of diabetics. Appl. Math. Sci. 8 (2014) 2773–2782.

[9] W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal Control. Springer Verlag, New York (1975). | MR | Zbl | DOI

[10] M. Frigo and S. G. Johnson, FFTW: An Adaptive Software Architecture for the FFT. Proc. Int. Conf. Acoust. Speech Signal Process. 3 (1998) 1381–1384.

[11] A. F. O. Gafar and I. Tahyudin, Comparison between k-means and fuzzy C-means clustering in network traffic activities. In: International Conference on Management Science and Engineering Management. Springer, Cham (2017) 300–310.

[12] D. Gueho, M. Majji and P. Singla, Data-based Modeling and Control of Dynamical Systems: Parameter Estimation. In: 2021 60th IEEE Conference on Decision and Control (CDC). IEEE (2021) 31–36. | DOI

[13] A. B. Gumel, P. N. Shivakumar and B. M. Sahai, A mathematical model for the dynamics of HIV-1 during the typical course of infection. Proc. 3rdWorld Cong. Nonlinear Anal. 47 (2011) 2073–2083.

[14] International Diabetes Federation (IDF), IDF DIABETES ATLAS, 9th edition (2019).

[15] A. Kouidere, O. Balatif, H. Ferjouchia, A. Boutayeb and M. Rachik, Optimal control strategy for a discrete time to the dynamics of a population of diabetics with highlighting the impact of living environment. Discrete Dyn. Nat. Soc. 2019 (2019). | MR | Zbl | DOI

[16] A. Kouidere, A. Labzai, H. Ferjouchia, O. Balatif and M. Rachik, A New Mathematical Modeling with Optimal Control Strategy for the Dynamics of Population of Diabetics and Its Complications with Effect of Behavioral Factors. J. Appl. Math. 2020 (2020). | MR | Zbl | DOI

[17] A. Kouidere, B. Khajji, O. Balatif and M. Rachik, A multi-age mathematical modeling of the dynamics of population diabetics with effect of lifestyle using optimal control. J. Appl. Math. Comput. (2021) 1–29. | MR | Zbl

[18] A. Mahata, B. Roy, S. P. Mondal and S. Alam, Application of ordinary differential equation in glucose-insulin regulatory system modeling in fuzzy environment. Ecol. Genet. Genom. 3 (2017) 60–66.

[19] A. Mahata, S. P. Mondal, S. Alam, A. Chakraborty, S. K. De and A. Goswami, Mathematical model for diabetes in fuzzy environment with stability analysis, J. Intell. Fuzzy Syst. 36 (2019) 2923–2932.

[20] A. Makroglou, I. Karaoustas, J. Li and Y. Kuang, Delay differential equation models in diabetes modeling. Theor. Biol. Med. Model. (2009).

[21] H. Mewada, J. F. Al-Asad and A. H. Khan, Landscape Change Detection Using Auto-Optimized K-means Algorithm. In: International Symposium on Advanced Electrical and Communication Technologies (ISAECT). IEEE 2020 (2020) 1–6.

[22] R. L. Ollerton, Application of optimal control theory to diabetes mellitus. Int. J. Control 50 (1989) 2503–2522. | MR | Zbl | DOI

[23] A. H. Permatasari, R. H. Tjahjana and T. Udjiani, Existence and characterization of optimal control in mathematics model of diabetics population. J. Phys. Conf. Ser. IOP Pub. (2018) 012069. | DOI

[24] E. H. Ruspini, J. C. Bezdek, J. M. Keller, Fuzzy clustering: A historical perspective. IEEE Comput. Intell. Mag. 14 (2019) 45–55. | DOI

[25] G. W. Swan, An optimal control model of diabetes mellitus. Bull. Math. Biol. 44 (1982) 793–808. | MR | Zbl | DOI

[26] P. Wang, J. Huang, Z. Cui, L. Xie and J. A. Chen, Gaussian error correction multiobjective positioning model with NSGA-II. Concurr. Comput. Pract. Exp. 32 (2020) e5464. | DOI

[27] World Health Organisation, Definition and diagnosis of diabetes mellitus and intermediate hyperglycemia, WHO, Geneva (2016).

[28] T. T. Yusuf, Optimal control of incidence of medical complications in a diabetic patients’ population. FUTA J. Res. Sci. 11 (2015) 180–189.

Cité par Sources :