Regularization algorithms for linear copositive problems
RAIRO. Operations Research, Tome 56 (2022) no. 3, pp. 1353-1371

The paper is devoted to the regularization of linear Copositive Programming problems which consists of transforming a problem to an equivalent form, where the Slater condition is satisfied and therefore the strong duality holds. We describe regularization algorithms based on a concept of immobile indices and on the understanding of the important role that these indices play in the feasible sets' characterization. These algorithms are compared to some regularization procedures developed for a more general case of convex problems and based on a facial reduction approach. We show that the immobile-index-based approach combined with the specifics of copositive problems allows us to construct more explicit and detailed regularization algorithms for linear Copositive Programming problems than those already available.

DOI : 10.1051/ro/2022063
Classification : 90C25, 90C46, 90C30, 90C34
Keywords: Linear copositive programming, strong duality, normalized immobile index set, regularization, minimal cone, facial reduction, constraint qualifications
@article{RO_2022__56_3_1353_0,
     author = {Kostyukova, Olga I. and Tchemisova, Tatiana V.},
     title = {Regularization algorithms for linear copositive problems},
     journal = {RAIRO. Operations Research},
     pages = {1353--1371},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {3},
     doi = {10.1051/ro/2022063},
     mrnumber = {4431921},
     zbl = {1492.90127},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2022063/}
}
TY  - JOUR
AU  - Kostyukova, Olga I.
AU  - Tchemisova, Tatiana V.
TI  - Regularization algorithms for linear copositive problems
JO  - RAIRO. Operations Research
PY  - 2022
SP  - 1353
EP  - 1371
VL  - 56
IS  - 3
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2022063/
DO  - 10.1051/ro/2022063
LA  - en
ID  - RO_2022__56_3_1353_0
ER  - 
%0 Journal Article
%A Kostyukova, Olga I.
%A Tchemisova, Tatiana V.
%T Regularization algorithms for linear copositive problems
%J RAIRO. Operations Research
%D 2022
%P 1353-1371
%V 56
%N 3
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2022063/
%R 10.1051/ro/2022063
%G en
%F RO_2022__56_3_1353_0
Kostyukova, Olga I.; Tchemisova, Tatiana V. Regularization algorithms for linear copositive problems. RAIRO. Operations Research, Tome 56 (2022) no. 3, pp. 1353-1371. doi: 10.1051/ro/2022063

[1] F. Ahmed, M. Dür and G. Still, Copositive Programming via semi-infinite optimization. J. Optim. Theory Appl. 159 (2013) 322–340. | MR | Zbl | DOI

[2] M. F. Anjos, J. B. Lasserre (editors), Handbook of Semidefinite, Conic and Polynomial Optimization. International Series in Operational Research and Management Science. Vol. 166. Springer US (2012) 138. | Zbl

[3] I. M. Bomze, Copositive optimization – recent developments and applications. EJOR 216 (2012) 509–520. | MR | Zbl | DOI

[4] J. F. Bonnans and A. Shapiro, Perturbation analysis of optimization problems. Springer-Verlag, New-York, NY (2000) 601. | MR | Zbl

[5] J. M. Borwein and H. Wolkowicz, Facial reduction for a cone-convex programming problem. J. Austral. Math. Soc. Ser. A. 30 (1981) 369–380. | MR | Zbl | DOI

[6] J. M. Borwein and H. Wolkowicz, Regularizing the abstract convex program. J. Math. Anal. Appl. 83 (1981) 495–530. | MR | Zbl | DOI

[7] E. De Klerk and D. V. Pasechnik, Approximation of the stability number of a graph via copositive programming. SIAM J. Optim. 12 (2002) 875–892. | MR | Zbl | DOI

[8] D. Drusvyatskiy and H. Wolkowicz, The many faces of degeneracy in conic optimization. In: Foundations and Trends in Optimization. Vol. 3. Now Publishers Inc. (2017) 77–170. | DOI

[9] M. Dür, Copositive programming – a survey. In: Recent Advances in Optimization and its Applications in Engineering, edited by M. Diehl, F. Glineur, E. Jarlebring and W. Michielis. Springer-Verlag, Berlin, Heidelberg (2010) 535.

[10] K. O. Kortanek and Q. Zhang, Perfect duality in semi-infinite and semidefinite programming. Math. Program. Ser. A 91 (2001) 127–144. | MR | Zbl | DOI

[11] O. I. Kostyukova and T. V. Tchemisova, Optimality conditions for convex semi-infinite programming problems with finitely representable compact index sets. J. Optim. Theory Appl. 175 (2017) 76–103. | MR | Zbl | DOI

[12] O. I. Kostyukova and T. V. Tchemisova, On equivalent representations and properties of faces of the cone of copositive matrices. Optimization (2020). DOI: . | DOI | MR | Zbl

[13] O. Kostyukova and T. Tchemisova, On strong duality in linear copositive programming. J. Global Optim. (2021) 1–24. DOI: . | DOI | MR | Zbl

[14] O. I. Kostyukova, T. V. Tchemisova and O. S. Dudina, Immobile indices and CQ-free optimality criteria for linear copositive programming problems. Set-Valued Var. Anal. 28 (2020) 89–107. | Zbl | MR | DOI

[15] A. N. Letchford and A. J. Parkes, A guide to conic optimisation and its applications. RAIRO Oper. Res. 52 (2018) 1087–1106. | MR | Zbl | Numdam | DOI

[16] V. L. Levin, Application of E. Helly’s theorem to convex programming, problems of best approximation and related questions. Math. USSR Sbornik 8 (1969) 235–247. | MR | Zbl | DOI

[17] Z.-Q. Luo, F. J. Sturm and S. Zhang, Duality Results for Conic Convex Programming, Econometric institute report no. 9719/a. Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute (1997).

[18] G. Pataki, simple derivation of a facial reduction algorithm and extended dual systems. Preprint available at http://www.unc.edu/pataki/papers/fr.pdf (2000).

[19] F. Permenter, H. Friberg and E. Andersen, Solving conic optimization problems via self-dual embedding and facial reduction: a unified approach. Tech. Report. (2015). DOI: . | DOI | MR | Zbl

[20] I. Pólik and T. Terlaky, Exact Duality for Optimization Over Symmetric Cones. AdvOL-Report No. 2007/10. McMaster University, Advanced Optimization Lab., Hamilton, Canada (2007).

[21] M. V. Ramana, L. Tunçel and H. Wolkowicz, Strong duality for semidefinite programming. SIAM J. Optim. 7 (1997) 641–662. | MR | Zbl | DOI

[22] M. V. Solodov, Constraint qualifications. In: Wiley Encyclopedia of Operations Research and Management Science, edited by J. J. Cochran, et al. John Wiley & Sons, Inc. (2010).

[23] L. Tunçel and H. Wolkowicz, Strong duality and minimal representations for cone optimization. Comput. Optim. Appl. 53 (2013) 619–648. | MR | Zbl | DOI

[24] H. Waki and M. Muramatsu, Facial reduction algorithms for conic optimization problems. J. Optim. Theory Appl. 158 (2013) 188–215. | MR | Zbl | DOI

[25] G.-W. Weber, Generalized semi-infinite optimization and related topics. In: Research and Exposition in Mathematics, edited by K. H. Hofmann, R. Willem. Vol. 29. Heldermann Publishing House, Lemgo (2003). | MR | Zbl

[26] H. Wolkowicz, R. Saigal and L. Vandenberghe, Handbook of Semidefinite Programming – Theory, Algorithms, and Applications. Kluwer Academic Publishers (2000). | MR | Zbl | DOI

Cité par Sources :