Complexity analysis of primal-dual interior-point methods for linear optimization based on a new efficient Bi-parameterized kernel function with a trigonometric barrier term
RAIRO. Operations Research, Tome 56 (2022) no. 2, pp. 731-750

In this paper we are generalizing the efficient kernel function with trigonometric barrier term given by (M. Bouafia, D. Benterki and A. Yassine, J. Optim. Theory Appl. 170 (2016) 528–545). Using an elegant and simple analysis and under some easy to check conditions, we explore the best complexity result for the large update primal-dual interior point methods for linear optimization. This complexity estimate improves results obtained in (X. Li and M. Zhang, Oper. Res. Lett. 43 (2015) 471–475; M.R. Peyghami and S.F. Hafshejani, Numer. Algo. 67 (2014) 33–48; M. Bouafia, D. Benterki and A. Yassine, J. Optim. Theory Appl. 170 (2016) 528–545). Our comparative numerical experiments on some test problems consolidate and confirm our theoretical results according to which the new kernel function has promising applications compared to the kernel function given by (M. Bouafia and A. Yassine, Optim. Eng. 21 (2020) 651–672). Moreover, the comparative numerical study that we have established favors our new kernel function better than other best trigonometric kernel functions (M. Bouafia, D. Benterki and A. Yassine, J. Optim. Theory Appl. 170 (2016) 528–545; M. Bouafia and A. Yassine, Optim. Eng. 21 (2020) 651–672).

DOI : 10.1051/ro/2022032
Classification : 90C05, 90C31, 90C51
Keywords: Linear optimization, Kernel function, Interior point methods, Complexity bound
@article{RO_2022__56_2_731_0,
     author = {Mousaab, Bouafia and Adnan, Yassine},
     title = {Complexity analysis of primal-dual interior-point methods for linear optimization based on a new efficient {Bi-parameterized} kernel function with a trigonometric barrier term},
     journal = {RAIRO. Operations Research},
     pages = {731--750},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {2},
     doi = {10.1051/ro/2022032},
     mrnumber = {4407593},
     zbl = {1492.90080},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2022032/}
}
TY  - JOUR
AU  - Mousaab, Bouafia
AU  - Adnan, Yassine
TI  - Complexity analysis of primal-dual interior-point methods for linear optimization based on a new efficient Bi-parameterized kernel function with a trigonometric barrier term
JO  - RAIRO. Operations Research
PY  - 2022
SP  - 731
EP  - 750
VL  - 56
IS  - 2
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2022032/
DO  - 10.1051/ro/2022032
LA  - en
ID  - RO_2022__56_2_731_0
ER  - 
%0 Journal Article
%A Mousaab, Bouafia
%A Adnan, Yassine
%T Complexity analysis of primal-dual interior-point methods for linear optimization based on a new efficient Bi-parameterized kernel function with a trigonometric barrier term
%J RAIRO. Operations Research
%D 2022
%P 731-750
%V 56
%N 2
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2022032/
%R 10.1051/ro/2022032
%G en
%F RO_2022__56_2_731_0
Mousaab, Bouafia; Adnan, Yassine. Complexity analysis of primal-dual interior-point methods for linear optimization based on a new efficient Bi-parameterized kernel function with a trigonometric barrier term. RAIRO. Operations Research, Tome 56 (2022) no. 2, pp. 731-750. doi: 10.1051/ro/2022032

[1] Y. Q. Bai and C. Roos, A primal-dual interior point method based on a new kernel function with linear growth rate. In Proceedings of the 9th Australian Optimization Day, Perth, Australia (2002).

[2] Y. Q. Bai, M. El Ghami and C. Roos, A comparative study of kernel functions for primal-dual interior point algorithms in linear optimization. SIAM J. Optim. 15 (2005) 101–128. | MR | Zbl | DOI

[3] M. Bouafia and A. Yassine, An efficient twice parameterized trigonometric kernel function for linear optimization. Optim. Eng. 21 (2020) 651–672. | MR | Zbl | DOI

[4] M. Bouafia, D. Benterki and A. Yassine, An efficient primal-dual Interior Point Method for linear programming problems based on a new kernel function with a trigonometric barrier term. J. Optim. Theory Appl. 170 (2016) 528–545. | MR | Zbl | DOI

[5] M. El Ghami, Z. A. Guennoun, S. Bouali and T. Steihaug, Interior point methods for linear optimization based on a kernel function with a trigonometric barrier term. J. Comput. Appl. Math. 236 (2012) 3613–3623. | MR | Zbl | DOI

[6] S. Fathi-Hafshejani, H. Mansourib, M. R. Peyghami and S. Chene, Primal–dual interior-pointmethod for linear optimization based on a kernel function with trigonometric growth term. Optimization 67 (2018) 1605–1630. | MR | Zbl | DOI

[7] N. K. Karmarkar, A new polynomial-time algorithm for linear programming. In Vol. 4 of Proceedings of the 16th Annual ACM Symposium on Theory of Computing (1984) 373–395. | MR | Zbl

[8] X. Li and M. Zhang, Interior-point algorithm for linear optimization based on a new trigonometric kernel function. Oper. Res. Lett. 43 (2015) 471–475. | MR | Zbl | DOI

[9] N. Megiddo, Pathways to the optimal set in linear programming. In Progress in Mathematical Programming: Interior Point and Related Methods, edited by N. Megiddo, Springer-Verlag, New York (1989) 131–158. | MR | Zbl | DOI

[10] J. Peng, C. Roos and T. Terlaky, Self-Regularity: A New Paradigm for Primal-Dual interior point Algorithms, Princeton University Press, Princeton, NJ (2002). | MR | Zbl

[11] M. R. Peyghami and S. F. Hafshejani, Complexity analysis of an interior point algorithm for linear optimization based on a new proximity function. Numer. Algo. 67 (2014) 33–48. | MR | Zbl | DOI

[12] M. R. Peyghami, S. F. Hafshejani and L. Shirvani, Complexity of interior point methods for linear optimization based on a new trigonometric kernel function. J. Comput. Appl. Math. 255 (2014) 74–85. | MR | Zbl | DOI

[13] C. Roos, T. Terlaky and Jph Vial, Theory and algorithms for linear optimization, In An interior point Approach, John Wiley & Sons, Chichester, UK (1997). | MR | Zbl

[14] G. Sonnevend, An “analytic center” for polyhedrons and new classes of global algorithms for linear (smooth, convex) programming. In Vol. 84 of System Modelling and Optimization: Proceedings of the 12th IFIP-Conference, Budapest, Hungary, 1985, in: Lecture Notes in Control and Inform. Sci., edited by A. Prekopa, J. Szelezsan, B. Strazicky. Springer-Verlag, Berlin (1986) 866–876. | MR | Zbl | DOI

[15] Y. Ye, Interior point algorithms. Theory and Analysis, John-Wiley Sons, Chichester, UK (1997). | MR | Zbl | DOI

Cité par Sources :