Hierarchical multilevel optimization with multiple-leaders multiple-followers setting and nonseparable objectives
RAIRO. Operations Research, Tome 55 (2021) no. 5, pp. 2915-2939

Hierarchical multilevel multi-leader multi-follower problems are non-cooperative decision problems in which multiple decision-makers of equal status in the upper-level and multiple decision-makers of equal status are involved at each of the lower-levels of the hierarchy. Much of solution methods proposed so far on the topic are either model specific which may work only for a particular sub-class of problems or are based on some strong assumptions and only for two level cases. In this paper, we have considered hierarchical multilevel multi-leader multi-follower problems in which the objective functions contain separable and non-separable terms (but the non-separable terms can be written as a factor of two functions, a function which depends on other level decision variables and a function which is common to all objectives across the same level) and shared constraint. We have proposed a solution algorithm to such problems by equivalent reformulation as a hierarchical multilevel problem involving single decision maker at all levels of the hierarchy. Then, we applied a multi-parametric algorithm to solve the resulting single leader single followers problem.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/ro/2021146
Classification : 91A65, 91A06, 91A10, 90C26
Keywords: Hierarchical game, multi-leader multi-follower, Stackelberg game, Nash game, equivalent reformulation, multi-parametric algorithm
@article{RO_2021__55_5_2915_0,
     author = {Zewde, Addis Belete and Kassa, Semu Mitiku},
     title = {Hierarchical multilevel optimization with multiple-leaders multiple-followers setting and nonseparable objectives},
     journal = {RAIRO. Operations Research},
     pages = {2915--2939},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {5},
     doi = {10.1051/ro/2021146},
     mrnumber = {4323409},
     zbl = {1483.91053},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2021146/}
}
TY  - JOUR
AU  - Zewde, Addis Belete
AU  - Kassa, Semu Mitiku
TI  - Hierarchical multilevel optimization with multiple-leaders multiple-followers setting and nonseparable objectives
JO  - RAIRO. Operations Research
PY  - 2021
SP  - 2915
EP  - 2939
VL  - 55
IS  - 5
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2021146/
DO  - 10.1051/ro/2021146
LA  - en
ID  - RO_2021__55_5_2915_0
ER  - 
%0 Journal Article
%A Zewde, Addis Belete
%A Kassa, Semu Mitiku
%T Hierarchical multilevel optimization with multiple-leaders multiple-followers setting and nonseparable objectives
%J RAIRO. Operations Research
%D 2021
%P 2915-2939
%V 55
%N 5
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2021146/
%R 10.1051/ro/2021146
%G en
%F RO_2021__55_5_2915_0
Zewde, Addis Belete; Kassa, Semu Mitiku. Hierarchical multilevel optimization with multiple-leaders multiple-followers setting and nonseparable objectives. RAIRO. Operations Research, Tome 55 (2021) no. 5, pp. 2915-2939. doi: 10.1051/ro/2021146

[1] J. Bracken and J. Mcgill, Mathematical programs with optimization problems in the constraints. Oper. Res. 21 (1973) 37–44. | MR | Zbl | DOI

[2] B. Brunaud, I. E. Grossmann, Perspectives in multilevel decision-making in the process industry. Front. Eng. Manag. 4 (2017) 256–270. | DOI

[3] V. Dua, N. A. Bozinis and E. N. Pistikopoulos, A multiparametric programming approach for mixed-integer quadratic engineering problems. Comput. Chem. Eng. 26 (2002) 715–733. | DOI

[4] V. Dua and E. N. Pistikopoulos, An algorithm for the solution of multiparametric mixed integer linear programming problems. Ann. Oper. Res. 99 (2000) 123–139. | MR | Zbl | DOI

[5] A. V. Fiacco, Sensitivity analysis for nonlinear programming using penalty methods. Math. Program. 10 (1976) 287–311. | MR | Zbl | DOI

[6] A. V. Fiacco, G. P. Mccormick, Nonlinear Programming: Sequential Unconstrained Minimization Techniques. J. Wiley and Sons Inc, New York, London, Sydney, Toronto (1968). | MR | Zbl

[7] M. Guignard, Generalized Kuhn-Tucker conditions for mathematical programming problems in a Banach space. SIAM J. Cont. 7 (1969) 232–241. | MR | Zbl | DOI

[8] J. Han, G. Zhang, Y. Hu, J. Lu, Solving tri-level programming problems using a particle swarm optimization algorithm. In: The 10th IEEE Conference on Industrial Electronics and Applications (2015) 569–574.

[9] J. Han, G. Zhang, J. Lu, Y. Hu and S. Ma, Model and algorithm for multi-follower tri-level hierarchical decision-making, edited by C. Loo, K. Yap, K. Wong, A. Beng-Jin and K. Huang. In: Neural Information Processing. ICONIP 2014, Part III. Lecture Notes in Computer Science, Vol. 8836. Springer, Switzerland (2014) 398–406.

[10] M. Hu and M. Fukushima, Multi-leader-follower games: models, methods and applications. J. Oper. Res. Soc. Jpn 58 (2015) 1–23. | MR | Zbl

[11] L. A. Julien, On noncooperative oligopoly equilibrium in the multiple leader–follower game. Eur. J. Oper. Res. 256 (2017) 650–662. | MR | Zbl | DOI

[12] S. M. Kassa, Three-level global resource allocation model for HIV control: A hierarchical decision system approach. Math. Biosci. Eng. 15 (2018) 255–273. | MR | Zbl | DOI

[13] A. M. Kassa and S. M. Kassa, Approximate solution algorithm for multi-parametric non-convex programming problems with polyhedral constraints. Int. J. Optim. Control: Theor. Appl. 4 (2014) 89–98. | MR | Zbl

[14] A. M. Kassa and S. M. Kassa, Deterministic solution approach for some classes of nonlinear multilevel programs with multiple follower. J. Global Optim. 68 (2017) 729–747. | MR | Zbl | DOI

[15] A. A. Kulkarni, U. V. Shanbhag, An existence result for hierarchical Stackelberg v/s Stackelberg games. IEEE Trans. Automat. Contr. 60 (2015) 3379–3384. | MR | Zbl | DOI

[16] S. Leyffer, T. Munson, Solving multi-leader-common-follower games. Optim. Methods Softw. 25 (2010) 601–623. | MR | Zbl | DOI

[17] K. Okuguchi, Expectations and stability in oligopoly models. In: Lecture Notes in Economics and Mathematical Systems, vol 138. Springer-Verlag, Berlin (1976). | MR | Zbl

[18] J. S. Pang and M. Fukushima, Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games. Comput. Manage. Sci. 2 (2005) 21–56. | MR | Zbl | DOI

[19] J. S. Pang and M. Fukushima, Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games. Comput. Manage. Sci. 6 (2009) 373–375. | MR | Zbl | DOI

[20] E. Pistikopoulos, M. Georgiadis, V. Dua, Multi-parametric programming: theory, algorithms and applications. Wiley-VCH Verlag GmbH & Co, KGaA (2007). | DOI

[21] H. D. Sherali, A multiple leader Stackelberg model and analysis. Oper. Res. 32 (1984) 390–404. | MR | Zbl | DOI

[22] C. L. Su, Analysis on the forward market equilibrium model. Oper. Res. Lett. 35 (2007) 74–82. | MR | Zbl | DOI

[23] L. Sun, Equivalent bilevel programming form for the generalized Nash equilibrium problem. J. Math. Res. 2 (2010) 8–13. | Zbl

[24] Q. Wang, F. Yang, Y. Liu, Bilevel programs with multiple followers. J. Syst. Sci. Complex. 13 (2000) 265–276. | MR | Zbl

[25] A. B. Zewde and S. M. Kassa, A method for solving some class of multilevel multi-leader multi-follower programming problems, edited by H. A. Le-Thi, H. M. Le, T. Pham-Dinh. In: Optimization of Complex Systems: Theory, Models, Algorithms and Applications. WCGO 2019. Advances in Intelligent Systems and Computing, Vol. 991. Springer Nature, Switzerland (2020) 589–599.

[26] A. B. Zewde, S. M. Kassa, Multi-parametric approach for multilevel multi-leader-multi-follower games using equivalent reformulations. J. Math. Comput. Sci. 11 (2021) 2955–2980.

Cité par Sources :