Low-cost heuristics for matrix bandwidth reduction combined with a Hill-Climbing strategy
RAIRO. Operations Research, Tome 55 (2021) no. 4, pp. 2247-2264

This paper studies heuristics for the bandwidth reduction of large-scale matrices in serial computations. Bandwidth optimization is a demanding subject for a large number of scientific and engineering applications. A heuristic for bandwidth reduction labels the rows and columns of a given sparse matrix. The algorithm arranges entries with a nonzero coefficient as close to the main diagonal as possible. This paper modifies an ant colony hyper-heuristic approach to generate expert-level heuristics for bandwidth reduction combined with a Hill-Climbing strategy when applied to matrices arising from specific application areas. Specifically, this paper uses low-cost state-of-the-art heuristics for bandwidth reduction in tandem with a Hill-Climbing procedure. The results yielded on a wide-ranging set of standard benchmark matrices showed that the proposed strategy outperformed low-cost state-of-the-art heuristics for bandwidth reduction when applied to matrices with symmetric sparsity patterns.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/ro/2021102
Classification : 05C78, 90C27
Keywords: Bandwidth reduction, sparse matrix, ant colony optimization, hyper-heuristic, reordering algorithms, renumbering, ordering, graph labeling, graph algorithm, local search procedure, Hill-Climbing procedure
@article{RO_2021__55_4_2247_0,
     author = {Gonzaga de Oliveira, Sanderson L. and Silva, Lib\'erio M.},
     title = {Low-cost heuristics for matrix bandwidth reduction combined with a {Hill-Climbing} strategy},
     journal = {RAIRO. Operations Research},
     pages = {2247--2264},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {4},
     doi = {10.1051/ro/2021102},
     zbl = {07412783},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2021102/}
}
TY  - JOUR
AU  - Gonzaga de Oliveira, Sanderson L.
AU  - Silva, Libério M.
TI  - Low-cost heuristics for matrix bandwidth reduction combined with a Hill-Climbing strategy
JO  - RAIRO. Operations Research
PY  - 2021
SP  - 2247
EP  - 2264
VL  - 55
IS  - 4
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2021102/
DO  - 10.1051/ro/2021102
LA  - en
ID  - RO_2021__55_4_2247_0
ER  - 
%0 Journal Article
%A Gonzaga de Oliveira, Sanderson L.
%A Silva, Libério M.
%T Low-cost heuristics for matrix bandwidth reduction combined with a Hill-Climbing strategy
%J RAIRO. Operations Research
%D 2021
%P 2247-2264
%V 55
%N 4
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2021102/
%R 10.1051/ro/2021102
%G en
%F RO_2021__55_4_2247_0
Gonzaga de Oliveira, Sanderson L.; Silva, Libério M. Low-cost heuristics for matrix bandwidth reduction combined with a Hill-Climbing strategy. RAIRO. Operations Research, Tome 55 (2021) no. 4, pp. 2247-2264. doi: 10.1051/ro/2021102

[1] E. G. Amparore, M. Beccuti and S. Donatelli, Gradient-based variable ordering of decision diagrams for systems with structural units, edited by D. D’Souza and K. Narayan Kumar. In: Vol. 10482 of ATVA 2017. Lecture Notes in Computer Science. Springer, Cham (2017) 184–200. | Zbl

[2] Z. A. Aziz, Ant colony hyper-heuristics for travelling salesman problem. Proc. Comput. Sci. 76 (2015) 534–538. 2015 IEEE International Symposium on Robotics and Intelligent Sensors (IEEE IRIS2015). | DOI

[3] M. W. Berry, B. Hendrickson and P. Raghavan, Sparse matrix reordering schemes for browsing hypertext, edited by J. Renegar, M. Shub and S. Smale. In: Vol. 32 of Lectures in Applied Mathematics. The Mathematics of Numerical Analysis. American Mathematical Society Press, Park City, Utah, USA (1996) pp. 99–123. | Zbl

[4] M. E. Bolanos, S. Aviyente and H. Radha, Graph entropy rate minimization and the compressibility of undirected binary graphs. In: Proceedings of IEEE Statistical Signal Processing Workshop (SSP). IEEE, Ann Arbor, MI (2012) 109–112.

[5] G. O. Chagas and S. L. Gonzaga De Oliveira, Metaheuristic-based heuristics for symmetric-matrix bandwidth reduction: a systematic review. Proc. Comput. Sci. (ICCS 2015 Int. Conf. Comput. Sci.) 51 (2015) 211–220.

[6] H.-K. Chen, Evaluation of triangular mesh layout techniques using large mesh simplification. Multimedia Tools App. 76 (2017) 25391–25419. | DOI

[7] A. Concas, C. Fenu and G. Rodriguez, PQser: a Matlab package for spectral seriation. Numer. Algorithms 80 (2019) 879–902. | MR | Zbl | DOI

[8] T. A. Davis and Y. Hu, The University of Florida sparse matrix collection. ACM Trans. Math. Softw. 38 (2011) 1–25. | MR | Zbl | DOI

[9] J. Derrac, S. García, D. Molina and F. Herrera, A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 1 (2011) 3–18. | DOI

[10] M. Dorigo and T. Stützle, Ant Colony Optimization. The MIT Press, Cambridge, MA (2004). | Zbl | DOI

[11] M. Dorigo, M. Birattari and T. Stützle, Ant colony optimization: artificial ants as a computational intelligence technique. IEEE Comput. Intell. Mag. 1 (2006) 28–39. | DOI

[12] J. H. Drake, A. Kheiri, E. Özcan and E. K. Burke, Recent advances in selection hyper-heuristics. Eur. J. Oper. Res. 2852 (2020) 405–428. | MR | Zbl | DOI

[13] Y. Gan, Y. He, L. Gao and W. He, Propagation path optimization of product attribute design changes based on petri net fusion ant colony algorithm. Expert Syst. App. 173 (2021) 114664. | DOI

[14] A. George and J. W. Liu, Computer Solution of Large Sparse Positive Definite Systems. Prentice-Hall, Englewood Cliffs (1981). | MR | Zbl

[15] S. L. Gonzaga De Oliveira and G. O. Chagas, A systematic review of heuristics for symmetric-matrix bandwidth reduction: methods not based on metaheuristics. In: Proceedings of the Brazilian Symposium on Operations Research (SBPO 2015). Sobrapo, Pernambuco, Brazil (2015).

[16] S. L. Gonzaga De Oliveira and L. M. Silva, Evolving reordering algorithms using an ant colony hyperheuristic approach for accelerating the convergence of the ICCG method. Eng. Comput. 36 (2019) 1857–1873. | DOI

[17] S. L. Gonzaga De Oliveira and L. M. Silva, An ant colony hyperheuristic approach for matrix bandwidth reduction. Appl. Soft Comput. 94 (2020) 106434. | DOI

[18] S. L. Gonzaga De Oliveira, A. A. A. M. Abreu, D. T. Robaina and M. Kischnhevsky, Finding a starting vertex for the reverse Cuthill–Mckee method for bandwidth reduction: a comparative analysis using asymmetric matrices, edited by O. Gervasi, et al. In: Vol. 10960 of The 18th International Conference on Computational Science and Its Applications (ICCSA), Lecture Notes in Computer Science. Springer International Publishing, Cham (2018) 123–137. | MR

[19] S. L. Gonzaga De Oliveira, J. A. B. Bernardes and G. O. Chagas, An evaluation of low-cost heuristics for matrix bandwidth and profile reductions. Comput. Appl. Math. 37 (2018) 1412–1471. | MR | Zbl | DOI

[20] S. L. Gonzaga De Oliveira, J. A. B. Bernardes and G. O. Chagas, An evaluation of reordering algorithms to reduce the computational cost of the incomplete Cholesky-conjugate gradient method. Comput. Appl. Math. 37 (2018) 2965–3004. | MR | Zbl | DOI

[21] D. J. Higham, Unravelling small world networks. J. Comput. Appl. Math. 158 (2003) 61–74. | MR | Zbl | DOI

[22] B. Koohestani and R. Poli, A hyper-heuristic approach to evolving algorithms for bandwidth reduction based on genetic programming. In: Research and Development in Intelligent Systems XXVIII. Springer, London, London, UK (2011) 93–106. | DOI

[23] A. Lim, B. Rodrigues and F. Xiao, A fast algorithm for bandwidth minimization. Int. J. Artif. Intell. Tools 16 (2007) 537–544. | DOI

[24] W. Ma, X. Zhou, H. Zhu, L. Li and L. Jiao, A two-stage hybrid ant colony optimization for high-dimensional feature selection. Pattern Recognit. 116 (2021) 107933. | DOI

[25] C. Mueller, B. Martin and A. Lumsdaine, A comparison of vertex ordering algorithms for large graph visualization. In: Proceedings of the 6th International Asia-Pacific Symposium on Visualization (APVIS’07). Sydney, Australia (2007) 141–148. | DOI

[26] C. H. Papadimitriou, The NP-completeness of bandwidth minimization problem. Comput. J. 16 (1976) 177–192. | MR | Zbl

[27] L. M. Silva and S. L. Gonzaga De Oliveira, An experimental analysis of a GP hyperheuristic approach for evolving low-cost heuristics for profile reductions. In: Anais do SEMISH – Seminário Integrado de Software e Hardware. Cuiabá, MT (2020). | DOI

[28] Y. Tian, D. Li, P. Zhou, R. Guo and Z. Liu, An aco-based hyperheuristic with dynamic decision blocks for intercell scheduling. J. Intell. Manuf. 29 (2018) 1905–1921. | DOI

[29] J. Torres-Jimenez, I. Izquierdo-Marquez, A. Garcia-Robledo, A. Gonzalez-Gomez, J. Bernal and R. N. Kacker, A dual representation simulated annealing algorithm for the bandwidth minimization problem on graphs. Inf. Sci. 303 (2015) 33–49. | MR | Zbl | DOI

[30] Z. Yang, L. Fang, X. Zhang and H. Zuo, Controlling a scattered field output of light passing through turbid medium using an improved ant colony optimization algorithm. Optics Lasers Eng. 144 (2021). | DOI

[31] Y. Zhang, W. Shao and S.-J. Lai, Some new strategies for RCM ordering in solving electromagnetic stattering problems. Comput. Phys. Commun. 184 (2013) 1161–1164. | MR | DOI

[32] L. Zhu, J. Lin, Y.-Y. Li and Z.-J. Wang, A decomposition-based multi-objective genetic programming hyper-heuristic approach for the multi-skill resource constrained project scheduling problem. Knowl.-Based Syst. 225 (2021) 107099. | DOI

Cité par Sources :