Robust duality for generalized convex nonsmooth vector programs with uncertain data in constraints
RAIRO. Operations Research, Tome 55 (2021) no. 4, pp. 2181-2188

Robust optimization has come out to be a potent approach to study mathematical problems with data uncertainty. We use robust optimization to study a nonsmooth nonconvex mathematical program over cones with data uncertainty containing generalized convex functions. We study sufficient optimality conditions for the problem. Then we construct its robust dual problem and provide appropriate duality theorems which show the relation between uncertainty problems and their corresponding robust dual problems.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/ro/2021095
Classification : 49J52, 90C26, 90C30, 90C46
Keywords: Robust nonsmooth optimization, robust duality, generalized convexity
@article{RO_2021__55_4_2181_0,
     author = {Ahmad, Izhar and Kaur, Arshpreet and Sharma, Mahesh Kumar},
     title = {Robust duality for generalized convex nonsmooth vector programs with uncertain data in constraints},
     journal = {RAIRO. Operations Research},
     pages = {2181--2188},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {4},
     doi = {10.1051/ro/2021095},
     mrnumber = {4284909},
     zbl = {1490.90206},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2021095/}
}
TY  - JOUR
AU  - Ahmad, Izhar
AU  - Kaur, Arshpreet
AU  - Sharma, Mahesh Kumar
TI  - Robust duality for generalized convex nonsmooth vector programs with uncertain data in constraints
JO  - RAIRO. Operations Research
PY  - 2021
SP  - 2181
EP  - 2188
VL  - 55
IS  - 4
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2021095/
DO  - 10.1051/ro/2021095
LA  - en
ID  - RO_2021__55_4_2181_0
ER  - 
%0 Journal Article
%A Ahmad, Izhar
%A Kaur, Arshpreet
%A Sharma, Mahesh Kumar
%T Robust duality for generalized convex nonsmooth vector programs with uncertain data in constraints
%J RAIRO. Operations Research
%D 2021
%P 2181-2188
%V 55
%N 4
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2021095/
%R 10.1051/ro/2021095
%G en
%F RO_2021__55_4_2181_0
Ahmad, Izhar; Kaur, Arshpreet; Sharma, Mahesh Kumar. Robust duality for generalized convex nonsmooth vector programs with uncertain data in constraints. RAIRO. Operations Research, Tome 55 (2021) no. 4, pp. 2181-2188. doi: 10.1051/ro/2021095

[1] T. Antczak, Y. Pandey, V. Singh and S. K. Mishra, On approximate efficiency for nonsmooth robust vector optimization problems. Acta Math. Sci. 40 (2020) 887–902. | MR | Zbl | DOI

[2] A. Beck and A. Ben-Tal, Duality in robust optimization: primal worst equals dual best. Oper. Res. Lett. 37 (2009) 1–6. | MR | Zbl | DOI

[3] D. Bertsimas, D. B. Brown and C. Caramanis, Theory and applications of robust optimization. SIAM Rev. 53 (2011) 464–501. | MR | Zbl | DOI

[4] J. Chen, E. Köbis and J.-C. Yao, Optimality conditions and duality for robust nonsmooth multiobjective optimization problems with constraints. J. Optim. Theory Appl. 181 (2019) 411–436. | MR | Zbl | DOI

[5] T. D. Chuong, Optimality and duality for robust multiobjective optimization problems. Nonlinear Anal. 134 (2016) 127–143. | MR | Zbl | DOI

[6] F. H. Clarke, Optimization and Nonsmooth Analysis. John Wiley & Sons, New York (1983). | MR | Zbl

[7] K. Deb and H. Gupta, Introducing robustness in multi-objective optimization. Evol. Comput. 14 (2006) 463–494. | DOI

[8] N. Dinh, M. A. Goberna, M. A. López and M. Volle, Convexity and closedness in stable robust duality. Optim. Lett. 13 (2019) 325–339. | MR | Zbl | DOI

[9] E. K. Doolittle, H. L. M. Kerivin and M. M. Wiecek, Robust multiobjective optimization with application to internet routing. Ann. Oper. Res. 271 (2018) 487–525. | MR | Zbl | DOI

[10] M. Ehrgott, J. Ide and A. Schöbel, Minmax robustness for multi-objective optimization problems. Eur. J. Oper. Res. 239 (2014) 17–31. | MR | Zbl | DOI

[11] M. Fakhar, M. R. Mahyarinia and J. Zafarani, On nonsmooth robust multiobjective optimization under generalized convexity with applications to portfolio optimization. Eur. J. Oper. Res. 265 (2018) 39–48. | MR | Zbl | DOI

[12] M. Goerigk, M. Schmidt, A. Schöbel, M. Knoth and M. Müller-Hannemann, The price of strict and light robustness in timetable information. Transp. Sci. 48 (2014) 225–242. | DOI

[13] J. Ide and E. Köbis, Concepts of efficiency for uncertain multi-objective optimization problems based on set order relations. Math. Methods Oper. Res. 80 (2014) 99–127. | MR | Zbl | DOI

[14] V. Jeyakumar, G. Li and G. M. Lee, Robust duality for generalized convex programming problems under data uncertainty. Nonlinear Anal. 75 (2012) 1362–1373. | MR | Zbl | DOI

[15] I. Kecskés and P. Odry, Robust optimization of multi-scenario many-objective problems with auto-tuned utility function. Eng. Optim. (2020) 1–21. | MR | Zbl

[16] D. Kuroiwa and G. M. Lee, On robust multiobjective optimization. Vietnam J. Math. 40 (2012) 305–317. | MR | Zbl

[17] J. H. Lee and G. M. Lee, On optimality conditions and duality theorems for robust semi-infinite multiobjective optimization problems. Ann. Oper. Res. 269 (2018) 419–438. | MR | Zbl | DOI

[18] S. K. Suneja, S. Khurana and M. Bhatia, Optimality and duality in vector optimization involving generalized type I functions over cones. J. Glob. Optim. 49 (2011) 23–35. | MR | Zbl | DOI

[19] S. Wang, Z. Chen and T. Liu, Distributionally robust hub location. Transp. Sci. 54 (2020) 1189–1210. | DOI

[20] C. Xu, Y. Chai, S. Qin, Z. Wang and J. Feng, A neurodynamic approach to nonsmooth constrained pseudoconvex optimization problem. Neural Netw. 124 (2020) 180–192. | Zbl | DOI

[21] Y. Yang, M. Pesavento, S. Chatzinotas and B. Ottersten, Energy efficiency optimization in MIMO interference channels: a successive pseudoconvex approximation approach. IEEE Trans. Signal Process. 67 (2019) 4107–4121. | MR | Zbl | DOI

Cité par Sources :