Pipe-lining dynamic programming processes to synchronize both the production and the consumption of energy
RAIRO. Operations Research, Tome 55 (2021) no. 4, pp. 2359-2383

Synchronizing heterogeneous processes remains a difficult issue in Scheduling area. Related ILP models are in trouble, because of large gaps induced by rational relaxation. We choose here to deal with it while emulating the interactions which take place between the various players of such heterogeneous processes, and propose a pipe-line decomposition of a dynamic programming process designed in order to schedule energy production and energy consumption

DOI : 10.1051/ro/2021094
Classification : 90-08, 90C39
Keywords: Scheduling, dynamic programming, energy management
@article{RO_2021__55_4_2359_0,
     author = {Bendali, Fatiha and Mole Kamga, Eloise and Mailfert, Jean and Quilliot, Alain and Toussaint, H\'el\`ene},
     title = {Pipe-lining dynamic programming processes to synchronize both the production and the consumption of energy},
     journal = {RAIRO. Operations Research},
     pages = {2359--2383},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {4},
     doi = {10.1051/ro/2021094},
     mrnumber = {4296610},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2021094/}
}
TY  - JOUR
AU  - Bendali, Fatiha
AU  - Mole Kamga, Eloise
AU  - Mailfert, Jean
AU  - Quilliot, Alain
AU  - Toussaint, Hélène
TI  - Pipe-lining dynamic programming processes to synchronize both the production and the consumption of energy
JO  - RAIRO. Operations Research
PY  - 2021
SP  - 2359
EP  - 2383
VL  - 55
IS  - 4
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2021094/
DO  - 10.1051/ro/2021094
LA  - en
ID  - RO_2021__55_4_2359_0
ER  - 
%0 Journal Article
%A Bendali, Fatiha
%A Mole Kamga, Eloise
%A Mailfert, Jean
%A Quilliot, Alain
%A Toussaint, Hélène
%T Pipe-lining dynamic programming processes to synchronize both the production and the consumption of energy
%J RAIRO. Operations Research
%D 2021
%P 2359-2383
%V 55
%N 4
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2021094/
%R 10.1051/ro/2021094
%G en
%F RO_2021__55_4_2359_0
Bendali, Fatiha; Mole Kamga, Eloise; Mailfert, Jean; Quilliot, Alain; Toussaint, Hélène. Pipe-lining dynamic programming processes to synchronize both the production and the consumption of energy. RAIRO. Operations Research, Tome 55 (2021) no. 4, pp. 2359-2383. doi: 10.1051/ro/2021094

[1] S. Albers, Energy-efficient algorithms. Commun. ACM 53 (2010) 86–96. | DOI

[2] E. Angel, E. Bampis and V. Chau, Low complexity scheduling algorithms minimizing the energy for tasks with agreeable deadlines. Discrete Appl. Math. 175 (2014) 1–10. | MR | Zbl | DOI

[3] P. Baptiste, Scheduing unit tasks to minimize the number of idle periods: a polynomial time algorithm for offline dynamic power management. In: Proc. 17 th Annual ACM-SIMA Symposium on Discrete Algorithms (2006) 364–367. | MR | Zbl

[4] P. Baptiste, E. Neron and F. Sourd, Modèles et Algorithmes en Ordonnancement. Ed Ellipses (2004) 198–203.

[5] L. Benini, A. Bogliolo and G. De Micheli, A survey of design techniques for system level dynamic power management. IEEE Trans. Very Large Scale Integr. Syst. 8 (2000) 299–316. | DOI

[6] K. Biel and C. H. Glock, Systematic literature review of decision support models for energy efficient decision planning. Comput. Ind. Eng. 101 (2016) 243–259. | DOI

[7] A. Burke, Batteries and ultracapacitors for electric, hybrid, and fuel cell vehicles. Proc. IEEE 95 (2007) 806–820. | DOI

[8] C. C. Chan, The state of the art of electric, hybrid, and fuel cell vehicles. Proc. IEEE 95 (2007) 704–718. | DOI

[9] P. Chrétienne and A. Quilliot, Homogeneous non idling schedules of unit-time jobs on identical parallel machines. Discrete Appl. Math. 161 (2013) 1586–1597. | MR | Zbl | DOI

[10] P. Chrétienne and A. Quilliot, A polynomial algorithm for the homogeneous non idling scheduling problem of unit-time independent jobs on identical parallel machines. Discrete Appl. Math. 243 (2018) 132–139. | MR | DOI

[11] P. Chrétienne, P. Fouilhoux and A. Quilliot, Anchored reactive and proactive solutions to the CPM-scheduling problem. Eur. J. Oper. Res. 261 (2017) 67–74. | MR | DOI

[12] E. Demaine, M. Ghodsi and M. Taghi Hajiaghayi, Scheduling to minimize gaps and power consumption. SPAA (2007) 46–54.

[13] M. Drexl, Synchronization in vehicle routing: a survey of VRPs with multiple synchronization constraints. Transp. Sci. 46 (2012) 297–316. | DOI

[14] J. R. Duflou, J. W. Sutherland, D. Dornfeld, C. Herrmann, J. Jeswiet, S. Kara, M. Hauschild and K. Kellens, Toward energy and resource efficient manufacturing: a process and system approach. CIRP Ann. – Manuf. Technol. 61 (2012) 587–609. | DOI

[15] S. Erdoğan and E. Miller-Hooks, A green vehicle routing problem. Transp. Res. Part E Logistics Transp. Rev. 109 (2012) 100–114. | DOI

[16] A. Franceschetti, E. Demir, D. Honhon, T. Van Woensel, G. Laporte and M. Stobbe, A metaheuristic for the time dependent pollution-routing problem. Eur. J. Oper. Res. 259 (2017) 972–991. | MR | DOI

[17] A. Giret, D. Trentesaux and V. Prabhu, Sustainability in manufacturing operations scheduling: a state of art review. J. Manuf. Syst. 37 (2015) 126–140. | DOI

[18] C. Grimes, O. Varghese and S. Ranjan, Light, Water, Hydrogen: The Solargeneration of Hydrogen By Water Photoelectrolysis. Springer-Verlag US (2008). | DOI

[19] S. Irani and K. Pruhs, Algorithmic problems in power management. SIGACT News 36 (2003) 63–76. | DOI

[20] I. Kara, B. Y. Kara and M. Kadri Yetis. Energy minimizing vehicle routing problem, edited by A. Dress, Y. Xu and B. Zhu. In: Combinatorial Optimization and Applications, Berlin, Heidelberg (2007) 62–71. | MR | Zbl | DOI

[21] C. Koç, O. Jabali, J. Mendoza and G. Laporte, The electric vehicle routing problem with shared charging stations. Int. Trans. Oper. Res. 26 (2018) 1211–1243. | MR | DOI

[22] Y. Kuo, Using simulated annealing to minimize fuel consumption for the time-dependent vehicle routing problem. Comput. Ind. Eng. 59 (2010) 157–165. | DOI

[23] A. Lajunen, Energy consumption and cost-benefit analysis of hybrid and electric city buses. Transp. Res. Part C: Emerg. Technol. 38 (2014) 1–15. | DOI

[24] D. Lamy, Méthodes et outils pour l’ordonnancement d’ateliers avec prise en compte de contraintes additionnelles : énergétiques et environnementales. Thèse de Doctorat, Université Clermont-Auvergne, France (2017).

[25] S. Licht, Thermochemical and Thermal/Photo Hybrid Solar Water Splitting. Springer, New York, New York, NY (2008).

[26] C. Lin, K. L. Choy, G. T. Ho, S. H. Chung and H. Lam, Survey of green vehicle routing problem: past and future trends. Expert Syst. App. 41 (2014) 1118–1138. | DOI

[27] F. J. Mailfert, E. Mole Kamga, A. Quilliot and H. Toussaint, Simultaneous Management of Energy Production and Consumption. In: Proc. IEEE CODIT 2020 (2020) 8.

[28] G. May, I. Barletta, B. Stahl and M. Taisch, Energy management in production: A novel method to develop key performance indicators for improving energy efficiency. Appl. Energy 149 (2015) 46–61. | DOI

[29] J.-Y. Moon and J.-W. Park, Smart production scheduling with time-dependent and machine-dependent electricity cost by considering distributed energy resources and energy storage. IJPR 52 (2013) 3922–3939. | DOI

[30] J.-Y. Moon, K. Shin and J. W. Park, Optimization of production scheduling with time-dependent and machine-dependent electricity cost for industrial energy efficiency. Int. J. Adv. Manuf. Technol. 68 (2013) 523–535. | DOI

[31] H. Mustapha, C. Desdouits, R. Giroudeau and C. Le Pape, Production scheduling with a piecewise-linear energy cost function. In: 2016 IEEE Symposium Series on Computational Intelligence (SSCI). (2016) 1–8.

[32] A. Pechmann and I. Schöler, Optimizing energy costs by intelligent production scheduling, edited by J. Hesselbach and C. Herrmann. In: Glocalized Solutions for Sustainability in Manufacturing. Berlin, Heidelberg (2011) 293–298. | DOI

[33] M. Raylan, S. Matos, Y. Frota and L. Satoru Ochi, Green vehicle routing and scheduling problem with split delivery. Joint, EURO/ALIO, International Conference 2018 on Applied Combinatorial Optimization, (EURO/ALIO 2018). Electron. Notes Discrete Math. 69 (2018) 13–20. | MR

[34] M. Sachenbacher, M. Leucker, A. Artmeier and J. Haselmayr, Efficient energy-optimal routing for electric vehicles. AAAI (2011).

[35] M. Schneider, A. Stenger and D. Goeke, The electric vehicle-routing problem with time windows and recharging stations. Transp. Sci. 48 (2014) 500–520. | DOI

[36] R. Waraich, M. Galus, C. Dobler, M. Balmer, G. Andersson and K. Axhausen, Plug-in hybrid electric vehicles and smart grid: micro simulation. Transp. Res. C 28 (2014) 74–86. | DOI

Cité par Sources :