Group ranking of two-stage production units in network data envelopment analysis
RAIRO. Operations Research, Tome 55 (2021) no. 3, pp. 1825-1840

Data envelopment analysis (DEA) is a useful mathematical tool for evaluating the performance of production units and ranking their relative efficiency. In many real-world applications, production units belong to several separate groups and also consist of several sub-units. In this paper, we introduce a new method of evaluating group efficiency of two-stage production systems. To this end, some new DEA models are introduced for evaluating and ranking groups of production systems based on the average and weakest group performance criteria. Some numerical examples, including an empirical application in the banking industry, are also provided for illustration.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/ro/2021082
Classification : 90B30
Keywords: Data envelopment analysis (DEA), group ranking, network group efficiency (NGE), Network DEA (NDEA)
@article{RO_2021__55_3_1825_0,
     author = {Shahbazifar, Mohammad Sajjad and Kazemi Matin, Reza and Khounsiavash, Mohsen and Koushki, Fereshteh},
     title = {Group ranking of two-stage production units in network data envelopment analysis},
     journal = {RAIRO. Operations Research},
     pages = {1825--1840},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {3},
     doi = {10.1051/ro/2021082},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2021082/}
}
TY  - JOUR
AU  - Shahbazifar, Mohammad Sajjad
AU  - Kazemi Matin, Reza
AU  - Khounsiavash, Mohsen
AU  - Koushki, Fereshteh
TI  - Group ranking of two-stage production units in network data envelopment analysis
JO  - RAIRO. Operations Research
PY  - 2021
SP  - 1825
EP  - 1840
VL  - 55
IS  - 3
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2021082/
DO  - 10.1051/ro/2021082
LA  - en
ID  - RO_2021__55_3_1825_0
ER  - 
%0 Journal Article
%A Shahbazifar, Mohammad Sajjad
%A Kazemi Matin, Reza
%A Khounsiavash, Mohsen
%A Koushki, Fereshteh
%T Group ranking of two-stage production units in network data envelopment analysis
%J RAIRO. Operations Research
%D 2021
%P 1825-1840
%V 55
%N 3
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2021082/
%R 10.1051/ro/2021082
%G en
%F RO_2021__55_3_1825_0
Shahbazifar, Mohammad Sajjad; Kazemi Matin, Reza; Khounsiavash, Mohsen; Koushki, Fereshteh. Group ranking of two-stage production units in network data envelopment analysis. RAIRO. Operations Research, Tome 55 (2021) no. 3, pp. 1825-1840. doi: 10.1051/ro/2021082

[1] N. Adler, L. Friedman and Z. Sinuany-Stern, Review of ranking methods in the data envelopment analysis context. Eur. J. Oper. Res. 140 (2002) 249–265. | Zbl | DOI

[2] A. Aldamak and S. Zolfaghari, Review of efficiency ranking methods in data envelopment analysis., Measurement 106 (2017) 161–172. | DOI

[3] P. Andersen and N. C. Petersen, A procedure for ranking efficient units in data envelopment analysis. Manage. Sci. 39 (1993) 1261–1264. | Zbl | DOI

[4] S. Ang, M. Chen and F. Yang, Group cross-efficiency evaluation in data envelopment analysis: An application to taiwan hotels. Comput. Ind. Eng. 125 (2018) 190–199. | DOI

[5] M. Z. Angiz, A. Mustafa and M. J. Kamali, Cross-ranking of decision making units in data envelopment analysis. Appl. Math. Model. 37 (2013) 398–405. | DOI

[6] R. Azizi and R. Kazemi Matin, Ranking two-stage production units in data envelopment analysis. Asia-Pac. J. Oper. Res. 33 (2016) 1650002. | DOI

[7] R. D. Banker and H. Chang, The super-efficiency procedure for outlier identification, not for ranking efficient units. Eur. J. Oper. Res. 175 (2006) 1311–1320. | Zbl | DOI

[8] A. Charnes, W. W. Cooper and E. Rhodes, Measuring the efficiency of decision making units. Eur. J. Oper. Res. 2 (1978) 429–444. | Zbl | DOI

[9] A. Charnes, W. W. Cooper, B. Golany, R. Halek, G. Klopp, E. Schmitz and D. Thomas, Two phase data envelopment analysis approaches to policy evaluation and management of army recruiting activities: Tradeoffs between joint services and army advertising. Center for Cybernetic Studies. University of Texas-Austin Austin, Texas, USA (1986).

[10] Y. Chen, Ranking efficient units in DEA. Omega 32 (2004) 213–219. | DOI

[11] Y. Chen, W. D. Cook, N. Li and J. Zhu, Additive efficiency decomposition in two-stage DEA. Eur. J. Oper. Res. 196 (2009) 1170–1176. | Zbl | DOI

[12] W. D. Cook and J. Zhu, Within-group common weights in DEA: An analysis of power plant efficiency. Eur. J. Oper. Res. 178 (2007) 207–216. | Zbl | DOI

[13] W. D. Cook, L. Liang and J. Zhu, Measuring performance of two-stage network structures by DEA: a review and future perspective. Omega 38 (2010) 423–430. | DOI

[14] D. K. Despotis, D. Sotiros and G. Koronakos, A network DEA approach for series multi-stage processes. Omega 61 (2016) 35–48. | DOI

[15] J. Doyle and R. Green, Efficiency and cross-efficiency in DEA: Derivations, meanings and uses. J. Oper. Res. Soc. 45 (1994) 567–578. | Zbl | DOI

[16] A. Esmaeilzadeh and R. Kazemi Matin, Multi-period efficiency measurement of network production systems. Measurement 134 (2019) 835–844. | DOI

[17] C. Guo, R. A. Shureshjani, A. A. Foroughi and J. Zhu, Decomposition weights and overall efficiency in two-stage additive network DEA. Eur. J. Oper. Res. 257 (2017) 896–906. | DOI

[18] G. R. Jahanshahloo, H. V. Junior, F. H. Lotfi and D. Akbarian, A new DEA ranking system based on changing the reference set. Eur. J. Oper. Res. 181 (2007) 331–337. | Zbl | DOI

[19] C. Kao, Efficiency decomposition in network data envelopment analysis: A relational model. Eur. J. Oper. Res. 192 (2009) 949–962. | Zbl | DOI

[20] C. Kao and S.-N. Hwang, Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in taiwan. Eur. J. Oper. Res. 185 (2008) 418–429. | Zbl | DOI

[21] L. Khoshandam, A. Amirteimoori and R. Kazemi Matin, Marginal rates of substitution in the presence of non-discretionary factors: A data envelopment analysis approach. Measurement 58 (2014) 409–415. | DOI

[22] L. Khoshandam, R. Kazemi Matin and A. Amirteimoori, Marginal rates of substitution in data envelopment analysis with undesirable outputs: A directional approach. Measurement 68 (2015) 49–57. | DOI

[23] F. Koushki, Performance measurement and productivity management in production units with network structure by identification of the most productive scale size pattern. Int. J. Supp. Oper. Manage. 5 (2018) 379–395.

[24] H. F. Lewis and T. R. Sexton, Network DEA: efficiency analysis of organizations with complex internal structure. Comput. Oper. Res. 31 (2004) 1365–1410. | Zbl | DOI

[25] H. H. Liu, Y. Y. Song and G. L. Yang, Cross-efficiency evaluation in data envelopment analysis based on prospect theory. Eur. J. Oper. Res. 273 (2019) 364–375. | DOI

[26] S. Mehrabian, M. R. Alirezaee and G. R. Jahanshahloo, A complete efficiency ranking of decision making units in data envelopment analysis. Comput. Optim. Appl. 14 (1999) 261–266. | Zbl | DOI

[27] A. Memariani and G. R. Jahanshahloo, A model for ranking decision making units in data envelopment analysis. Ricerca Operativa (2001).

[28] F. Rolf and G. Shawna, Network DEA. Socio-Econ. Plan. Sci. 34 (2000) 35–49. | DOI

[29] A. A. Salo and R. P. Hämäläinen, Preference assessment by imprecise ratio statements. Oper. Res. 40 (1992) 1053–1061. | Zbl | DOI

[30] A. A. Salo, R. P. Hämäläinen, On the measurement of preferences in the analytic hierarchy process. J. Multi-Crit. Dec. Anal. 6 (1997) 309–319. | Zbl | DOI

[31] A. Salo and A. Punkka, Ranking intervals and dominance relations for ratio-based efficiency analysis. Manage. Sci. 57 (2011) 200–214. | Zbl | DOI

[32] T. R. Sexton, R. H. Silkman and A. J. Hogan, Data envelopment analysis: Critique and extensions. New Direct. Program Eval. 1986 (1986) 73–105. | DOI

[33] D. Sotiros, G. Koronakos and D. K. Despotis, Dominance at the divisional efficiencies level in network DEA: The case of two-stage processes. Omega 85 (2019) 144–155. | DOI

[34] M. Tavana, M. A. Kaviani, D. D. Caprio and B. Rahpeyma, A two-stage data envelopment analysis model for measuring performance in three-level supply chains. Measurement 78 (2016) 322–333. | DOI

[35] K. Tone and M. Tsutsui, Network DEA: A slacks-based measure approach. Eur. J. Oper. Res. 197 (2009) 243–252. | Zbl | DOI

[36] A. M. Torgersen, F. R. Førsund and S. A. C. Kittelsen, Slack-adjusted efficiency measures and ranking of efficient units. J. Product. Anal. 7 (1996) 379–398. | DOI

[37] M. D. Troutt, Derivation of the maximin efficiency ratio model from the maximum decisional efficiency principle. Ann. Oper. Res. 73 (1997) 323–338. | Zbl | DOI

[38] J. Wu, J. Chu, J. Sun, Q. Zhu and L. Liang, Extended secondary goal models for weights selection in DEA cross-efficiency evaluation. Comput. Ind. Eng. 93 (2016) 143–151. | DOI

[39] J. Wu, J. Chu, Q. Zhu, Y. Li and L. Liang, Determining common weights in data envelopment analysis based on the satisfaction degree. J. Oper. Res. Soc. 67 (2016) 1446–1458. | DOI

[40] J. Zhu, Quantitative Models for Performance Evaluation and Benchmarking: Data Envelopment Analysis with Spreadsheets and Dea Excel Solver, Vol 51. Springer Science & Business Media (2003). | Zbl | DOI

Cité par Sources :