On derivative based bounding for simplicial branch and bound
RAIRO. Operations Research, Tome 55 (2021) no. 3, pp. 2023-2034

Simplicial based Global Optimization branch and bound methods require tight bounds on the objective function value. Recently, a renewed interest appears on bound calculation based on Interval Arithmetic by Karhbet and Kearfott [Reliable Comput. 25 (2017) 53–73] and on exploiting second derivative bounds by Mohand [RAIRO Oper. Res. 55 (2021) S2373–S238]. The investigated question here is how partial derivative ranges can be used to provide bounds of the objective function value over the simplex. Moreover, we provide theoretical properties of how this information can be used from a monotonicity perspective to reduce the search space in simplicial branch and bound.

DOI : 10.1051/ro/2021081
Classification : 65K05, 90C30, 90C34
Keywords: Simplex, branch and bound, derivative
@article{RO_2021__55_3_2023_0,
     author = {Hendrix, Eligius M. T. and -T\'oth, Boglarka G. and Messine, Frederic and Casado, Leocadio G.},
     title = {On derivative based bounding for simplicial branch and bound},
     journal = {RAIRO. Operations Research},
     pages = {2023--2034},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {3},
     doi = {10.1051/ro/2021081},
     mrnumber = {4279919},
     zbl = {1471.90167},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2021081/}
}
TY  - JOUR
AU  - Hendrix, Eligius M. T.
AU  - -Tóth, Boglarka G.
AU  - Messine, Frederic
AU  - Casado, Leocadio G.
TI  - On derivative based bounding for simplicial branch and bound
JO  - RAIRO. Operations Research
PY  - 2021
SP  - 2023
EP  - 2034
VL  - 55
IS  - 3
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2021081/
DO  - 10.1051/ro/2021081
LA  - en
ID  - RO_2021__55_3_2023_0
ER  - 
%0 Journal Article
%A Hendrix, Eligius M. T.
%A -Tóth, Boglarka G.
%A Messine, Frederic
%A Casado, Leocadio G.
%T On derivative based bounding for simplicial branch and bound
%J RAIRO. Operations Research
%D 2021
%P 2023-2034
%V 55
%N 3
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2021081/
%R 10.1051/ro/2021081
%G en
%F RO_2021__55_3_2023_0
Hendrix, Eligius M. T.; -Tóth, Boglarka G.; Messine, Frederic; Casado, Leocadio G. On derivative based bounding for simplicial branch and bound. RAIRO. Operations Research, Tome 55 (2021) no. 3, pp. 2023-2034. doi: 10.1051/ro/2021081

[1] G. Aparicio, L. G. Casado, E. M. T. Hendrix, B. G. -Toth and I. Garcia, On the minimum number of simplex shapes in longest edge bisection refinement of a regular n -simplex. Informatica 26 (2015) 17–32. | MR | Zbl | DOI

[2] E. M. T. Hendrix, L. G. Casado and I. Garcia, The semi-continuous quadratic mixture design problem: Description and branch-and-bound approach. Eur. J. Oper. Res. 191 (2008) 803–815. | MR | Zbl | DOI

[3] E. M. T. Hendrix and J. Pintér, An application of Lipschitzian global optimization to product design. J. Global Optim. 1 (1991) 389–401. | MR | Zbl | DOI

[4] E. M. T. Hendrix, J. M. G. Salmerón and L. G. Casado, On function monotonicity in simplicial branch and bound. AIP conference proceedings 2070 (2019) 020007–4. | DOI

[5] R. Horst and H. Tuy, Global Optimization (Deterministic Approaches). Springer, Berlin Heidelberg (1990). | MR | Zbl | DOI

[6] S. D. Karhbet and R. B. Kearfott, Range bounds of functions over simplices, for branch and bound algorithms. Reliable Comput. 25 (2017) 53–73. https://interval.louisiana.edu/reliable-computing-journal. | MR

[7] C. C. Meewella and D. Q. Mayne, An algorithm for global optimization of Lipschitz continuous functions. J. Optim. Theory Appl. 57 (1988) 307–323. | MR | Zbl | DOI

[8] F. Messine and J.-L. Lagouanelle, Enclosure methods for multivariate differentiable functions and application to global optimization. J. Universal Comput. Sci. 4 (1998) 589–603. | MR | Zbl

[9] O. Mohand, Tighter bound functions for nonconvex functions over simplexes. RAIRO Oper. Res. 55 (2021) S2373–S238. | MR | Zbl | DOI

[10] R. Paulavičius and J. Žilinskas, Simplicial Global Optimization. Springer, New York (2014). | MR | Zbl | DOI

[11] M. J. Todd, The Computation of Fixed Points and Applications. Springer, Heidelberg (1976). | MR | Zbl | DOI

Cité par Sources :