A new soft computing algorithm based on cloud theory for dynamic facility layout problem
RAIRO. Operations Research, Tome 55 (2021), pp. S2433-S2453

This paper deals with dynamic facility layout problem (DFLP) in a plant which is concerned with determining the best position of machines in the plant during a multi-period planning horizon. The material handling costs and machines rearrangement costs (MRC) are used to determine the best layout. In addition to the positions of machines, the details of transportation such as type of transporters and sequence of transportation operations have a direct effect on material handling costs (MHC). Therefore, it is more realistic to consider the transportation details during DFLP optimization. This paper proposes a new mathematical model to simultaneously determine the best position of machines in each period and to plan the transportation operations. Minimizing sum of MHC and MRC is considered as the objective function. A new hybrid meta-heuristic approach has been developed by combining modified genetic algorithm and cloud-based simulated annealing algorithm to solve the model. Finally, the proposed methodology is compared with two meta-heuristics on a set of test problems.

DOI : 10.1051/ro/2020127
Classification : 68U20, 90-08, 91B70
Keywords: Dynamic facility layout problem, transporters, modified genetic algorithm, cloud-based simulated annealing algorithm
@article{RO_2021__55_S1_S2433_0,
     author = {Hosseini, Seyed Shamsodin and Azimi, Parham and Sharifi, Mani and Zandieh, Mostafa},
     title = {A new soft computing algorithm based on cloud theory for dynamic facility layout problem},
     journal = {RAIRO. Operations Research},
     pages = {S2433--S2453},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     doi = {10.1051/ro/2020127},
     mrnumber = {4223090},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2020127/}
}
TY  - JOUR
AU  - Hosseini, Seyed Shamsodin
AU  - Azimi, Parham
AU  - Sharifi, Mani
AU  - Zandieh, Mostafa
TI  - A new soft computing algorithm based on cloud theory for dynamic facility layout problem
JO  - RAIRO. Operations Research
PY  - 2021
SP  - S2433
EP  - S2453
VL  - 55
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2020127/
DO  - 10.1051/ro/2020127
LA  - en
ID  - RO_2021__55_S1_S2433_0
ER  - 
%0 Journal Article
%A Hosseini, Seyed Shamsodin
%A Azimi, Parham
%A Sharifi, Mani
%A Zandieh, Mostafa
%T A new soft computing algorithm based on cloud theory for dynamic facility layout problem
%J RAIRO. Operations Research
%D 2021
%P S2433-S2453
%V 55
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2020127/
%R 10.1051/ro/2020127
%G en
%F RO_2021__55_S1_S2433_0
Hosseini, Seyed Shamsodin; Azimi, Parham; Sharifi, Mani; Zandieh, Mostafa. A new soft computing algorithm based on cloud theory for dynamic facility layout problem. RAIRO. Operations Research, Tome 55 (2021), pp. S2433-S2453. doi: 10.1051/ro/2020127

[1] P. Afentakis, R. Millen and M. M. Solomon, Dynamic layout strategies for flexible manufacturing systems. Int. J. Prod. Res. 28 (1990) 311–323. | DOI

[2] J. Balakrishnan and C. H. Cheng, Dynamic layout algorithms: a State-of-the-art Survey. Omega 26 (1998) 507–521. | DOI

[3] J. Balakrishnan and C. H. Cheng, Genetic search and the dynamic layout problem. Comput. Oper. Res. 27 (2000) 587–593. | Zbl | DOI

[4] J. Balakrishnan and C. H. Cheng, The dynamic plant layout problem: incorporating rolling horizons and forecast uncertainty. Omega 37 (2009) 165–177. | DOI

[5] J. Balakrishnan, F. R. Jacobs and M. A. Venkataramanan, Solutions for the constrained dynamic facility layout problem. Eur. J. Oper. Res. 57 (1992) 280–286. | Zbl | DOI

[6] J. Balakrishnan, C. H. Cheng, D. G. Conway and C. M. Lau, A hybrid genetic algorithm for the dynamic plant layout problem. Int. J. Prod. Econ. 86 (2003) 107–120. | DOI

[7] A. Baykasoğlu and N. N. Z. Gindy, A simulated annealing algorithm for dynamic layout problem. Comput. Oper. Res. 28 (2001) 1403–1426. | MR | Zbl | DOI

[8] A. Baykasoğlu, T. Dereli and I. Sabuncu, An ant colony algorithm for solving budget constrained and unconstrained dynamic facility layout problems. Omega 34 (2006) 385–396. | DOI

[9] L. Deyi and D. Yi, Artificial Intelligence with Uncertainty. Chapman & Hall/CRC, London (2005). | MR | Zbl

[10] L. Deyi, M. Haijun and S. Xuemei, Membership clouds and membership cloud generators. J. Comput. Res. Dev. 32 (1995) 15–20.

[11] K. Di, L. Deyi and L. Deren, Cloud theory and its applications in spatial data mining knowledge discovery. J. Image Graph 4 (1999) 930–935.

[12] A. Drira, H. Pierreval and H. Hajri-Gabouj, Facility layout problems: a survey. Ann. Rev. Control 31 (2007) 255–267. | DOI

[13] E. Erel, J. B. Ghosh and J. T. Simon, New heuristic for the dynamic layout problem. J. Oper. Res. Soc. 54 (2003) 1275–1282. | Zbl | DOI

[14] M. Horta, F. Coelho and S. Relvas, Layout design modelling for a real world just-in-time warehouse. Comput. Ind. Eng. 101 (2016) 1–9. | DOI

[15] S. S. Hosseini and M. Seifbarghy, A novel meta-heuristic algorithm for multi-objective dynamic facility layout problem, RAIRO:OR 50 (2016) 869–890. | MR | Zbl | Numdam | DOI

[16] S. Hosseini, A. Al Khaled and S. Vadlamani, Hybrid imperialist competitive algorithm, variable neighborhood search, and simulated annealing for dynamic facility layout problem. Neural Comput. App. 25 (2014) 1871–1885. | DOI

[17] M. Hu, A high-fidelity three-dimensional simulation method for evaluating passenger flow organization and facility layout at metro stations. Simulation 93 (2017) 841–851. | DOI

[18] B. K. Kaku and J. B. Mazzola, A tabu-search heuristic for the dynamic plant layout problem. Informs J. Comput. 9 (1997) 374–384. | Zbl | DOI

[19] M. Kaveh, V. Majazi Dalfard and S. Amiri, A new intelligent algorithm for dynamic facility layout problem in state of fuzzy constraints. Neural Comput. App. 24 (2014) 1179–1190. | DOI

[20] K. K. Krishnan, S. H. Cheraghi and C. N. Nayak, Dynamic From-Between Chart: a new tool for solving dynamic facility layout problems. Int. J. Ind. Syst. Eng. 1 (2006) 182–200.

[21] T. A. Lacksonen and E. E. Enscore, Quadratic assignment algorithms for the dynamic layout problem. Int. J. Prd. Res. 31 (1993) 503–517. | DOI

[22] J. Liu, W. Dawen, H. Kun and X. Yu, Combining Wang–Landau sampling algorithm and heuristics for solving the unequal-area dynamic facility layout problem. Eur. J. Oper. Res. 262 (2017) 1052–1063. | MR | DOI

[23] P. Lv, L. Yuan and J. Zhang, Cloud theory-based simulated annealing algorithm and application. Eng. Appl. Artif. Intell. 22 (2009) 742–749. | DOI

[24] A. R. Mckendall Jr and W. H. Liu, New Tabu search heuristics for the dynamic facility layout problem. Int. J. Prod. Res. 50 (2012) 867–878. | DOI

[25] A. R. Mckendall Jr and J. Shang, Hybrid ant systems for the dynamic facility layout problem. Comput. Oper. Res. 33 (2006) 790–803. | Zbl | DOI

[26] A. R. Mckendall Jr, J. Shang and S. Kuppusamy, Simulated annealing heuristics for the dynamic facility layout problem. Comput. Oper. Res. 33 (2006) 2431–2444. | MR | Zbl | DOI

[27] G. Moslemipour, T. S. Lee and D. Rilling, A review of intelligent approaches for designing dynamic and robust layouts in flexible manufacturing systems. Int. J. Adv. Manuf. Technol. 60 (2012) 11–27. | DOI

[28] J. A. Qudeiri, U. Umer, F. A. Khadra, H. M. A. Hussein, A. Al-Ahmari, S. Darwish and M. H. Abidi, Layout design optimization of dynamic environment flexible manufacturing systems. Adv. Mech. Eng. 7 (2015) 1–11. | DOI

[29] H. Rezazadeh, M. Ghazanfari, M. Saidi-Mehrabad and S. J. Sadjadi, An extended discrete particle swarm optimization algorithm for the dynamic facility layout problem. J. Zhejiang Univ. Sci. A 10 (2009) 520–529. | Zbl | DOI

[30] J. M. Rodriguez, F. C. Macphee, D. J. Bonham and V. C. Bhavsar, Solving the dynamic plant layout problem using a new hybrid meta-heuristic algorithm. Int. J. High Perform Comput. Networking 4 (2006) 286–294. | DOI

[31] M. J. Rosenblatt, The dynamics of plant layout. Manage. Sci. 32 (1986) 76–86. | Zbl | DOI

[32] R. Şahin and O. Türkbey, A new hybrid tabu-simulated annealing heuristic for the dynamic facility layout problem. Int. J. Prod. Res. 47 (2009) 6855–6873. | Zbl | DOI

[33] R. Şahin, K. Ertoğral and O. Türkbey, A simulated annealing heuristic for the dynamic facility layout problem with budget constraint. Comput. Ind. Eng. 59 (2010) 308–313. | DOI

[34] R. Sharpe and B. S. Marksjö, Facility layout optimization using the metropolis algorithm. Environ. Plann B 12 (1985) 443–453. | DOI

[35] S. P. Singh and R. R. K. Sharma, A review of different approaches to the facility layout problems. Int. J. Adv. Manuf. Technol. 30 (2006) 425–433. | DOI

[36] J. A. Tompkins, J. A. White, Y. A. Bozer and J. M. A. Tanchoco, Facilities Planning. John Wiley & Sons, New York (2003).

[37] B. H. Ulutas and A. A. Islier, A clonal selection algorithm for dynamic facility layout problems. J. Manuf. Syst. 28 (2009) 123–131. | DOI

[38] T. L. Urban, A heuristic for the dynamic facility layout problem. IIE Trans. 25 (1993) 57–63. | DOI

[39] S. Vitayasak, P. Pongcharoen and C. Hicks, A tool for solving stochastic dynamic facility layout problems with stochastic demand using either a Genetic Algorithm or modified Backtracking Search Algorithm. Int. J. Prod. Econ. 190 (2017) 146–157. | DOI

[40] J. De Witte, The use of similarity coefficients in production flow analysis. Int. J. Prod. Res. 18 (1980) 503–514. | DOI

[41] L. Yao, L. Sun, W. Wang and X. Xia, Connection facility layout model of subway stations. Adv. Mech. Eng. 7 (2015) 457508. | DOI

Cité par Sources :