The operating behaviour of unbalanced, unpaced merging assembly lines
RAIRO. Operations Research, Tome 55 (2021) no. 1, pp. 99-113

Unbalanced assembly line research has grown in importance because of its increasing applications in emerging economies, reverse logistics and remanufacturing. This paper examines the performance of numerous simulated patterns for reliable unbalanced manual merging assembly lines. The contribution of this study to the literature is that imbalance does not always negatively impact efficiency and that it can improve merging line performance when compared to a corresponding balanced merging line. The best performance was found to be a balanced line configuration and a monotone decreasing order for both parallel merging lines, with the former generally resulting in a lower throughput and the latter resulting in a lower average buffer level than that of a balanced line.

DOI : 10.1051/ro/2020126
Classification : 90B30, 90B70
Keywords: Merging lines, imbalance patterns, average buffer level, throughput, simulation
@article{RO_2021__55_1_99_0,
     author = {McNamara, Tom and Shaaban, Sabry and Sbihi, Abdelkader and Laarraf, Zouhair},
     title = {The operating behaviour of unbalanced, unpaced merging assembly lines},
     journal = {RAIRO. Operations Research},
     pages = {99--113},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {1},
     doi = {10.1051/ro/2020126},
     mrnumber = {4223880},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2020126/}
}
TY  - JOUR
AU  - McNamara, Tom
AU  - Shaaban, Sabry
AU  - Sbihi, Abdelkader
AU  - Laarraf, Zouhair
TI  - The operating behaviour of unbalanced, unpaced merging assembly lines
JO  - RAIRO. Operations Research
PY  - 2021
SP  - 99
EP  - 113
VL  - 55
IS  - 1
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2020126/
DO  - 10.1051/ro/2020126
LA  - en
ID  - RO_2021__55_1_99_0
ER  - 
%0 Journal Article
%A McNamara, Tom
%A Shaaban, Sabry
%A Sbihi, Abdelkader
%A Laarraf, Zouhair
%T The operating behaviour of unbalanced, unpaced merging assembly lines
%J RAIRO. Operations Research
%D 2021
%P 99-113
%V 55
%N 1
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2020126/
%R 10.1051/ro/2020126
%G en
%F RO_2021__55_1_99_0
McNamara, Tom; Shaaban, Sabry; Sbihi, Abdelkader; Laarraf, Zouhair. The operating behaviour of unbalanced, unpaced merging assembly lines. RAIRO. Operations Research, Tome 55 (2021) no. 1, pp. 99-113. doi: 10.1051/ro/2020126

J. Abu Qudeiri, H. Yamamoto, R. Ramli and A. Jamali, Genetic algorithm for buffer size and work station capacity in serial-parallel production lines. Artif. Life Rob. 12 (2008) 102–106. | DOI

S. K. Bahadir, Assembly line balancing in garment production by simulation, edited by W. Grzechca. In: Assembly Line – Theory and Practice, IntechOpen (2011).

K. R. Baker and S. G. Powell, A predictive model for the throughput of simple assembly systems. Eur. J. Oper. Res. 81 (1995) 336–345. | Zbl | DOI

K. R. Baker, S. G. Powell and D. F. Pyke, Buffered and un-buffered assembly systems with variable processing times. J. Manuf. Oper. Manage. 3 (1990) 200–223.

K. R. Baker, S. G. Powell and D. F. Pyke, Optimal allocation of work in assembly systems. Manage. Sci. 39 (1993) 101–106. | DOI

R. Bhatnagar and P. Chandra, Variability in assembly and competing systems: effect on performance and recovery. IIE Trans. 26 (1994) 18–31. | DOI

J. H. Blackstone Jr and J. F. Cox Iii, Designing unbalanced lines-understanding protective capacity and protective inventory. Prod. Plan. Control 13 (2002) 416–423. | DOI

C. C. Chan, C. L. Hui, K.W. Yeung and S. F. Ng, Handling the assembly line balancing problem in the clothing industry using a genetic algorithm. Int. J. Clothing Sci. Technol. 10 (1998) 21–37. | DOI

T. S. Cocks and S. C. Harlock, Computer-aided simulation of production in the sewing room of a clothing factory. J. Text. Inst. 80 (1989) 455–463. | DOI

R. Conway, W. Maxwell, J. O. Mcclain and L. J. Thomas, The role of work-in-process inventory in serial production lines. Oper. Res. 36 (1988) 229–241. | DOI

B. Das, J. M. Sanchez-Rivas, A. Gacia-Diaz and C. A. A. Macdonald, Computer simulation approach to evaluating assembly line balancing with variable operation times. J. Manuf. Technol. Manage. 2 (2010) 872–887. | DOI

W. J. Doll and M. A. Vonderembse, The evolution of manufacturing systems: towards the post-industrial enterprise. Omega 19 (1991) 401–411. | DOI

T. El-Rayah, The efficiency of balanced and unbalanced production lines. Int. J. Prod. Res. 17 (1997) 61–75. | DOI

S. H. Eryuruk, Clothing assembly line design using simulation and heuristic line balancing techniques. J. Textile Apparel/Tekstil ve Konfeksiyon 22 (2012) 360–368.

M. Fleischmann, P. Beullens, J. M. Bloemhof-Ruwaard and L. N. Wassenhove, The impact of product recovery on logistics network design. Prod. Oper. Manage. 10 (2001) 156–173. | DOI

G. Fozzard, J. Spragg and D. Tyler, Simulation of flow lines in clothing manufacture. Part 1: model construction. Int. J. Clothing Sci. Technol. 8 (1996) 17–27. | DOI

K. Futamura, The multiple server effect: optimal allocation of servers to stations with different service-time distributions in tandem queueing networks. Ann. Oper. Res. 93 (2000) 71–90. | MR | Zbl | DOI

H. Gökçen, K. Ağpak and R. Benzer, Balancing of parallel assembly lines. Int. J. Prod. Econ. 103 (2006) 600–609. | DOI

A. Grosfeld-Nir and T. Ben-Zvi, Multistage production systems with random yields and rigid demand. Int. J. Manuf. Technol. Manage. 20 (2010) 286–299. | DOI

V. D. R. Guide and L. N. Wassenhove, Managing product returns for remanufacturing. Prod. Oper. Manage. 10 (2001) 142–155. | DOI

M. Gungor and S. Agac, Resource-constrained mixed model assembly line balancing in an apparel company. J. Textile Apparel/Tekstil ve Konfeksiyon 24 (2014) 405–412.

M. Güner and C. Üœnal, Line balancing in the apparel industry using simulation techniques. Fibres Textiles Eastern Europe 16 (2008) 75–78.

C. Harrell, B. K. Ghosh and R. O. Bowden, Simulation Using ProModel. McGraw Hill, New York, NY (2004).

M. Hillier, Designing unpaced production lines to optimize throughput and work-in-process inventory. IEEE Trans. 45 (2013) 516–527. | DOI

F. S. Hillier and R. W. Boling, The effect of some design factors on the efficiency of production lines with variable element times. J. Ind. Eng. 17 (1966) 651–658.

S. J. T. Hsieh, Hybrid analytic and simulation models for assembly line design and production planning. Simul. Modell. Pract. Theory 10 (2002) 87–108. | Zbl | DOI

S. Hudson, T. Mcnamara and S. Shaaban, Unbalanced lines: where are we now? Int. J. Prod. Res. 53 (2015) 1895–1911. | DOI

S. T. Hutchinson, J. R. Villalobos and M. G. Beruvides, Effects of high labour turnover in a serial assembly environment. Int. J. Prod. Res. 35 (1997) 3201–3223. | Zbl | DOI

K. C. Jeong and Y.-D. Kim, Technical note: an approximation method for performance analysis of assembly/disassembly systems with parallel-machine stations. IEEE Trans. 31 (1999) 391–394. | DOI

K. C. Jeong and Y.-D. Kim, Heuristics for selecting machines and determining buffer capacities in assembly systems. Comput. Ind. Eng. 38 (2000) 341–360. | DOI

Z. Jia, L. Zhang, J. Arinez and G. Xiao, Performance analysis of assembly systems with Bernoulli machines and finite buffers during transients. IEEE Trans. Autom. Sci. Eng. 13 (2016) 1018–1032. | DOI

S. N. Kadipasaoglu, W. Xiang, S. F. Hurley and B. M. Khumawala, A study on the effect of the extent and location of protective capacity in flow systems. Int. J. Prod. Econ. 63 (2000) 217–228. | DOI

F. Kalaoğlu and C. Saricam, Analysis of modular manufacturing system in clothing industry by using simulation. Fibres Text. Eastern Eur. 15–3 (2007) 93–96.

M. Kayar and M. Akalin, Comparing the effects of automat use on assembly line performance in the apparel industry by using a simulation method. Fibres Text. Eastern Eur. 23–5 (2015) 114–123. | DOI

M. Kayar and M. Akalin, Comparing heuristic and simulation methods applied to the apparel assembly line balancing problem. Fibres Text. Eastern Eur. 24 (2016) 131–137. | DOI

C. T. Kuo, J. T. Lim, S. M. Meerkov and E. Park, Improvability theory for assembly Systems: two component, one assembly machine case. Math. Prob. Eng. 3 (1996) 95–171. | Zbl | DOI

A. M. Law, Simulation Modeling and Analysis. Irwin/McGraw-Hill, Illinois, (2007).

J. W. K. Leung and K. K. Lai, Analysis of strategies for installing parallel stations in assembly systems. Ind. Eng. Manage. Syst. 4 (2005) 117–122.

J. E. Li, D. Blumenfeld, N. M. Huang and J. Alden, Throughput analysis of production systems: recent advances and future topics. Int. J. Prod. Res. 47 (2009) 3823–3851. | DOI

X. G. Liu and J. A. Buzacott, Approximate models of assembly systems with finite inventory banks. Eur. J. Oper. Res. 45 (1990) 143–54. | Zbl | DOI

C. E. Lopez, Unbalanced workload allocation in large assembly lines. MS dissertation, Department of Industrial and Systems Engineering, Rochester Institute of Technology (2014).

K. E. Maani and G. L. Hogg, A stochastic network simulation model for production line systems. Int. J. Prod. Res. 18 (1980) 723–739. | DOI

M. J. Magazine and K. E. Stecke, Throughput for production lines with serial work stations and parallel service facilities. Perform. Eval. 25 (1996) 211–232. | Zbl | DOI

T. Mcnamara, S. Shaaban and S. Hudson, Simulation of unbalanced buffer allocation in unreliable unpaced production lines. Int. J. Prod. Res. 51 (2013) 1922–1936. | DOI

T. Mcnamara, S. Shaaban and S. Hudson, Mean time imbalance effects on unreliable unpaced serial flow line. J. Manuf. Syst. 33 (2014) 357–365. | DOI

L. E. Moberly and F. P. Wyman, An application of simulation to the comparison of assembly line configurations. Decis. Sci. 4 (1973) 505–516. | DOI

A. Patchong and D. Willaeys, Modeling and analysis of an unreliable flow line composed of parallel-machine stages. IIE Trans. 33 (2001) 559–568. | DOI

S. G. Powell, Buffer allocation in unbalanced three-station serial lines. Int. J. Prod. Res. 32 (1994) 2201–2217. | Zbl

S. G. Powell and D. F. I. Pyke, Buffering unbalanced assembly systems. IIE Trans. 30 (1998) 55–65. | DOI

M. M. Rahman, F. Nur and S. Talapatra, An integrated framework of applying line balancing in apparel manufacturing organization: a case study. J. Mech. Eng. 44 (2015) 117–123. | DOI

I. Rekhi, S. Chand and H. Moskowitz, A note on optimal allocation of work in stochastic assembly systems. Eur. J. Oper. Res. 137 (2002) 387–393. | Zbl | DOI

R. Romero-Silva and S. Shaaban, Influence of unbalanced operation time means and uneven buffer allocation on unreliable merging assembly line efficiency. Int. J. Prod. Res. 57 (2019) 1645–1666. | DOI

I. Sabuncuoglu, E. Erel and A. G. Kok, Analysis of assembly systems for interdeparture time variability and throughput. IIE Trans. 34 (2002) 23–40. | DOI

I. Sabuncuoglu, E. Erel and Y. Gocgun, Analysis of serial production lines: characterisation study and a new heuristic procedure for optimal buffer allocation. Int. J. Prod. Res. 44 (2006) 2499–2523. | Zbl | DOI

S. Shaaban and T. Mcnamara, Improving the efficiency of unpaced production lines by unbalancing service time means. Int. J. Oper. Res. 4 (2009) 346–361. | Zbl | DOI

S. Shaaban, T. Mcnamara and V. Dmitriev, Asymmetrical buffer allocation in unpaced merging assembly lines. Comput. Ind. Eng. 109 (2017) 211–220. | DOI

N. Slack, Work time distributions in production system modelling. Research paper, Oxford Centre for Management Studies (1982).

B. A. Tan, Three-station merge system with unreliable stations and a shared buffer. Math. Comput. Modell. 33 (2001) 1011–1026. | MR | Zbl | DOI

F. Thiesse and E. Fleisch, On the value of location information to lot scheduling in complex manufacturing processes. Int. J. Prod. Econ. 112 (2008) 532–547. | DOI

L. Tiacci, Simultaneous balancing and buffer allocation for the design of mixed-model assembly lines with parallel workstations and stochastic task times. Int. J. Prod. Econ. 162 (2015) 201–215. | DOI

M. A. Vonderembse and G. P. White, Core Concepts of Operations Management. Wiley-Higher Education, Hoboken, NJ, (2004).

World Trade Organization, International Trade Statistics 2014. Available at: https://www.wto.org/english/res_e/statis_e/its2014_e/its14_highlights2_e.pdf (Accessed: July 29, 2016).

M. F. Yegul, F. S. Erenay, S. Striepe and M. Yavuz, Improving configuration of complex production lines via simulation-based optimization. Comput. Ind. Eng. 109 (2017) 295–312. | DOI

J. Zielinski and M. Czacherska, Optimisation of the work of a sewing team by using computer simulation. Fibres Text. Eastern Eur. 12 (2004) 78–82.

Cité par Sources :