Fuzzy Gilmore and Gomory algorithm: Application in robotic flow shops with the effects of job-dependent transportation and set-ups
RAIRO. Operations Research, Tome 55 (2021), pp. S1515-S1528

This paper addresses the scheduling of robotic cells with job-dependent transportation and set-up effects with fuzzy methodology. Since transportation and set-up times are a large portion of the production time in a flexible manufacturing cell, ignoring these parameters may cause significant errors in determining the optimal makespan. Furthermore, determining the exact values of these time parameters is a challenging task. To overcome this problem, we represent these parameters using fuzzy L-R numbers. Using the capability of fuzzy numbers to represent approximate values, we can represent these parameters without losing valuable information. For generating the optimal part sequencing in the cells, the Gilmore and Gomory algorithm is modified, and instead, a fuzzy Gilmore and Gomory algorithm is developed. We compare the results of the proposed fuzzy method with those of crisp ones. The results indicate the superiority of the proposed algorithm in terms of robustness, flexibility, and reduction of makespan.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/ro/2020121
Classification : 65L05, 03E72, 34K28
Keywords: Fuzzy flow shop scheduling, robotic cells, fuzzy L-R numbers, Gilmore and Gomory algorithm
@article{RO_2021__55_S1_S1515_0,
     author = {Sotudian, Shahabeddin and Sadat Asl, Ali Akbar and Fazel Zarandi, Mohammad Hossein},
     title = {Fuzzy {Gilmore} and {Gomory} algorithm: {Application} in robotic flow shops with the effects of job-dependent transportation and set-ups},
     journal = {RAIRO. Operations Research},
     pages = {S1515--S1528},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     doi = {10.1051/ro/2020121},
     mrnumber = {4223138},
     zbl = {07375312},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2020121/}
}
TY  - JOUR
AU  - Sotudian, Shahabeddin
AU  - Sadat Asl, Ali Akbar
AU  - Fazel Zarandi, Mohammad Hossein
TI  - Fuzzy Gilmore and Gomory algorithm: Application in robotic flow shops with the effects of job-dependent transportation and set-ups
JO  - RAIRO. Operations Research
PY  - 2021
SP  - S1515
EP  - S1528
VL  - 55
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2020121/
DO  - 10.1051/ro/2020121
LA  - en
ID  - RO_2021__55_S1_S1515_0
ER  - 
%0 Journal Article
%A Sotudian, Shahabeddin
%A Sadat Asl, Ali Akbar
%A Fazel Zarandi, Mohammad Hossein
%T Fuzzy Gilmore and Gomory algorithm: Application in robotic flow shops with the effects of job-dependent transportation and set-ups
%J RAIRO. Operations Research
%D 2021
%P S1515-S1528
%V 55
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2020121/
%R 10.1051/ro/2020121
%G en
%F RO_2021__55_S1_S1515_0
Sotudian, Shahabeddin; Sadat Asl, Ali Akbar; Fazel Zarandi, Mohammad Hossein. Fuzzy Gilmore and Gomory algorithm: Application in robotic flow shops with the effects of job-dependent transportation and set-ups. RAIRO. Operations Research, Tome 55 (2021), pp. S1515-S1528. doi: 10.1051/ro/2020121

M. Allahverdi and A. Allahverdi, Algorithms for four-machine flowshop scheduling problem with uncertain processing times to minimize makespan. RAIRO:OR 54 (2020) 529–553. | MR | Zbl | Numdam | DOI

K. Amrouche and M. Boudhar, Two machines flow shop with reentrance and exact time lag. RAIRO:OR 50 (2016) 223–232. | MR | Zbl | Numdam | DOI

E. Babaee Tirkolaee, A. Goli and G. W. Weber, Fuzzy mathematical programming and self-adaptive artificial fish swarm algorithm for just-in-time energy-aware flow shop scheduling problem with outsourcing option. IEEE Trans. Fuzzy Syst. 28 (2020) 2772–2783. | DOI

K. R. Baker and D. Trietsch, Principles of Sequencing and Scheduling. John Wiley & Sons (2013). | MR | Zbl

R. E. Burkard, V. G. Deineko, R. Van Dal, J. A. A. Van Der Veen and G. J. Woeginger, Well-solvable special cases of the traveling salesman problem: a survey. SIAM Rev. 40 (1998) 496–546. | MR | Zbl | DOI

M. H. Fazel Zarandi, A. A. Sadat Asl, S. Sotudian and O. Castillo, A state of the art review of intelligent scheduling. Artif. Intell. Rev. 53 (2020) 501–593. | DOI

D. P. Filev and R. R. Yager, A generalized defuzzification method via bad distributions. Int. J. Intell. Syst. 6 (1991) 687–697. | Zbl | DOI

P. C. Gilmore and R. E. Gomory, Sequencing a one state-variable machine: a solvable case of the traveling salesman problem. Oper. Res. 12 (1964) 655–679. | MR | Zbl | DOI

A. Goli, E. B. Tirkolaee and M. Soltani, A robust just-in-time flow shop scheduling problem with outsourcing option on subcontractors. Prod. Manuf. Res. 7 (2019) 294–315.

H. Golpîra and E. B. Tirkolaee, Stable maintenance tasks scheduling: A bi-objective robust optimization model. Comput. Ind. Eng. 137 (2019) 106007. | DOI

M. Hanss, Applied Fuzzy Arithmetic: An Introduction with Engineering Applications. Springer, Berlin-Heidelberg (2005). | Zbl

H. Kise, T. Shioyama and T. Ibaraki, Automated two-machine flowshop scheduling: a solvable case. IIE Trans. 23 (1991) 10–16. | DOI

E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan and D. B. Shmoys, Sequencing and scheduling: Algorithms and complexity. In: Logistics of Production and Inventory, edited by S. S. Graves, A. H. G. Rinnooy Kan, P. Zipkin. Vol. 4 of Handbooks in Operations Research and Management Science. North-Holland (1993) 445–522. | DOI

L. Lei, R. Armstrong and S. Gu, Minimizing the fleet size with dependent time-window and single-track constraints. Oper. Res. Lett. 14 (1993) 91–98. | Zbl | DOI

J. Leung and G. Zhang, Optimal cyclic scheduling for printed circuit board production lines with multiple hoists and general processing sequence. IEEE Trans. Robot. Autom. 19 (2003) 480–484. | DOI

E. V. Levner, Optimal planning of parts’ machining on a number of machines. Autom. Remote Control 12 (1969) 1972–1978. | MR | Zbl

E. Levner, K. Kogan and O. Maimon, Flowshop scheduling of robotic cells with job-dependent transportation and set-up effects. J. Oper. Res. Soc. 46 (1995) 1447–1455. | Zbl | DOI

W. Li, J. Li , K. Gao, Y. Han, B. Niu, Z. Liu and Q. Sun, Solving robotic distributed flowshop problem using an improved iterated greedy algorithm. Int. J. Adv. Robot. Syst. 16 (2019) 1729881419879819. | DOI

E. N. Nasibov and A. Mert, On methods of defuzzification of parametrically represented fuzzy numbers. Autom. Control Comput. Sci. 41 (2007) 265–273. | DOI

M. Rabbani, M. Samavati, M. S. Ziaee and H. Rafiei, Reconfigurable dynamic cellular manufacturing system: a new bi-objective mathematical model. RAIRO:OR 48 (2014) 75–102. | MR | Zbl | Numdam | DOI

A. A. Sadat Asl, M. H. Fazel Zarandi, S. Sotudian and A. Amini, A fuzzy capacitated facility location-network design model: a hybrid firefly and invasive weed optimization (FIWO) solution. Iran. J. Fuzzy Syst. 17 (2020) 79–95.

H. I. Stern and G. Vitner, Scheduling parts in a combined production-transportation work cell. J. Oper. Res. Soc. 41 (1990) 625–632. | Zbl | DOI

S. Sotudian, M. H. F. Zarandi and I. B. Turksen, From Type-I to Type-II fuzzy system modeling for diagnosis of hepatitis. Int. J. Comput. Inf. Eng. 10 (2016) 1280–1288.

A. Tajdin, I. Mahdavi, N. Mahdavi-Amiri and B. Sadeghpour-Gildeh, Computing a fuzzy shortest path in a network with mixed fuzzy arc lengths using alpha-cuts. Comput. Math. Appl. 60 (2010) 989–1002. | MR | Zbl | DOI

P. Wanke, C. P. Barros and A. Emrouznejad, A comparison between stochastic DEA and fuzzy DEA approaches: revisiting efficiency in Angolan banks. RAIRO:OR 52 (2018) 285–303. | MR | Zbl | Numdam | DOI

Cité par Sources :