Adaptive projection methods for linear fractional programming
RAIRO. Operations Research, Tome 55 (2021), pp. S2383-S2392

In this paper, we are interested in solving a linear fractional program by two different approaches. The first one is based on interior point methods which makes it possible to solve an equivalent linear program to the linear fractional program. The second one allows us to solve a variational inequalities problem equivalent to the linear fractional program by an efficient projection method. Numerical tests were carried out by the two approaches and a comparative study was carried out. The numerical tests show clearly that interior point methods are more efficient than of projection one.

DOI : 10.1051/ro/2020091
Classification : 90C32, 35R35, 90C51
Keywords: Linear fractional programming, variational inequalities problem, interior point methods, projection methods
@article{RO_2021__55_S1_S2383_0,
     author = {Bennani, Ahlem and Benterki, Djamel and Grar, Hassina},
     title = {Adaptive projection methods for linear fractional programming},
     journal = {RAIRO. Operations Research},
     pages = {S2383--S2392},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     doi = {10.1051/ro/2020091},
     mrnumber = {4223174},
     zbl = {1472.90136},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2020091/}
}
TY  - JOUR
AU  - Bennani, Ahlem
AU  - Benterki, Djamel
AU  - Grar, Hassina
TI  - Adaptive projection methods for linear fractional programming
JO  - RAIRO. Operations Research
PY  - 2021
SP  - S2383
EP  - S2392
VL  - 55
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2020091/
DO  - 10.1051/ro/2020091
LA  - en
ID  - RO_2021__55_S1_S2383_0
ER  - 
%0 Journal Article
%A Bennani, Ahlem
%A Benterki, Djamel
%A Grar, Hassina
%T Adaptive projection methods for linear fractional programming
%J RAIRO. Operations Research
%D 2021
%P S2383-S2392
%V 55
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2020091/
%R 10.1051/ro/2020091
%G en
%F RO_2021__55_S1_S2383_0
Bennani, Ahlem; Benterki, Djamel; Grar, Hassina. Adaptive projection methods for linear fractional programming. RAIRO. Operations Research, Tome 55 (2021), pp. S2383-S2392. doi: 10.1051/ro/2020091

[1] M. Babul Hasan and S. Acharjee, Solving LFP by converting it into a single LP. Int. J. Oper. Res. 8 (2011) 1–14. | MR | Zbl

[2] E. B. Bajalinov, Linear-Fractional Programming Theory, Methods, Applications and Software. Kluwer Academic Publishers, Boston, MA (2003). | Zbl | DOI

[3] G. R. Bitran and A. J. Novaes, Linear programming with a fractional objective function. J. Oper. Res. 21 (1973) 22–29. | MR | Zbl | DOI

[4] A. Cambini and L. Martein, A modified version of Martos’s algorithm for the linear fractional problem. Methods Oper. Res. 53 (1986) 33–44. | MR | Zbl

[5] A. Charnes and W. W. Cooper, Programming with linear functional. Nav. Res. Logist. Q. 9 (1962) 181–186. | MR | Zbl | DOI

[6] W. Dinkelbach, On nonlinear fractional programming. Manage. Sci. 13 (1967) 492–498. | MR | Zbl | DOI

[7] P. C. Gimore and R. E. Gomory, Linear programming approach to the cutting stock problem-part 2. Oper. Res. 11 (1963) 863–867. | Zbl | DOI

[8] H. Grar and D. Benterki, New effective projection method for variational inequalities problem. RAIRO: OR 49 (2015) 805–820. | MR | Zbl | Numdam | DOI

[9] J. R. Isbell and W. H. Marlow, Attrition games. Nav. Res. Logist. Q. 3 (1956) 1–99. | MR | Zbl | DOI

[10] I. J. Lustig, A practical approach to Karmarkar’s algorithm, Technical report sol 85-5 System optimization laboratory; Department of Operations Research Stanford. University of Stanford, CA (1985).

[11] I. J. Lustig, Feasibility issues in a primal-dual interior point method for linear programming. Math. Program. 49 (1991) 145–162. | MR | Zbl | DOI

[12] B. Martos, Hyperbolic programming. Nav. Res. Logist. Q. 11 (1964) 135–155. | MR | Zbl | DOI

[13] A. Nagih and G. Plateau, Problèmes fractionnaires: tour d’horizon sur les applications et méthodes de résolution. RAIRO: OR 33 (1999) 383–419. | MR | Zbl | Numdam | DOI

[14] S. K. Saha, M. R. Hossain, M. K. Uddin and R. N. Mondal, A new approach of solving linear fractional programming problem (LFP) by using computer algorithm. Open J. Optim. 4 (2015) 74–86. | DOI

[15] J. K. Sharma, A. K. Gupta and M. P. Gupta, Extension of simplex technic for solving programming problems. Indian J. Pure Appl. Math. 11 (1980) 961–968. | MR | Zbl

[16] K. Swarup, Linear fractional functional programming. Oper. Res. 110 (1962) 380–387.

[17] K. Swarup, Linear fractional functional programming. Oper. Res. 13 (1965) 1029–1036. | Zbl | DOI

[18] O. Zerdani, L’optimisation non linéaire multiobjectif, Thèse de doctorat, Université Mouloud Mammeri, Tizi-Ouzou (2013).

Cité par Sources :