Soft-computing approaches for rescheduling problems in a manufacturing industry
RAIRO. Operations Research, Tome 55 (2021), pp. S2125-S2159

Flexible manufacturing systems as technological and automated structures have a high complexity for scheduling. The decision-making process is made difficult with interruptions that may occur in the system and these problems increase the complexity to define an optimal schedule. The research proposes a three-stage hybrid algorithm that allows the rescheduling of operations in an FMS. The novelty of the research is presented in two approaches: first is the integration of the techniques of Petri nets, discrete simulation, and memetic algorithms and second is the rescheduling environment with machine failures to optimize the makespan and Total Weighted Tardiness. The effectiveness of the proposed Soft computing approaches was validated with the bottleneck of heuristics and the dispatch rules. The results of the proposed algorithm show significant findings with the contrasting techniques. In the first stage (scheduling), improvements are obtained between 50 and 70% on performance indicators. In the second stage (failure), four scenarios are developed that improve the variability, flexibility, and robustness of the schedules. In the final stage (rescheduling), the results show that 78% of the instances have variations of less than 10% for the initial schedule. Furthermore, 88% of the instances support rescheduling with variations of less than 2% compared to the heuristics.

DOI : 10.1051/ro/2020077
Classification : 90B35, 90B36, 68M20
Keywords: Flexible manufacturing system, scheduling, reactive scheduling, Petri net, memetics algorithm
@article{RO_2021__55_S1_S2125_0,
     author = {Acevedo-Chedid, Jaime and Grice-Reyes, Jennifer and Ospina-Mateus, Holman and Salas-Navarro, Katherinne and Santander-Mercado, Alcides and Sana, Shib Sankar},
     title = {Soft-computing approaches for rescheduling problems in a manufacturing industry},
     journal = {RAIRO. Operations Research},
     pages = {S2125--S2159},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     doi = {10.1051/ro/2020077},
     mrnumber = {4223179},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2020077/}
}
TY  - JOUR
AU  - Acevedo-Chedid, Jaime
AU  - Grice-Reyes, Jennifer
AU  - Ospina-Mateus, Holman
AU  - Salas-Navarro, Katherinne
AU  - Santander-Mercado, Alcides
AU  - Sana, Shib Sankar
TI  - Soft-computing approaches for rescheduling problems in a manufacturing industry
JO  - RAIRO. Operations Research
PY  - 2021
SP  - S2125
EP  - S2159
VL  - 55
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2020077/
DO  - 10.1051/ro/2020077
LA  - en
ID  - RO_2021__55_S1_S2125_0
ER  - 
%0 Journal Article
%A Acevedo-Chedid, Jaime
%A Grice-Reyes, Jennifer
%A Ospina-Mateus, Holman
%A Salas-Navarro, Katherinne
%A Santander-Mercado, Alcides
%A Sana, Shib Sankar
%T Soft-computing approaches for rescheduling problems in a manufacturing industry
%J RAIRO. Operations Research
%D 2021
%P S2125-S2159
%V 55
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2020077/
%R 10.1051/ro/2020077
%G en
%F RO_2021__55_S1_S2125_0
Acevedo-Chedid, Jaime; Grice-Reyes, Jennifer; Ospina-Mateus, Holman; Salas-Navarro, Katherinne; Santander-Mercado, Alcides; Sana, Shib Sankar. Soft-computing approaches for rescheduling problems in a manufacturing industry. RAIRO. Operations Research, Tome 55 (2021), pp. S2125-S2159. doi: 10.1051/ro/2020077

[1] J. Acevedo and G. Mejía, Programación reactiva y robusta de la producción en un ambiente sistema de manufactura flexible: llegada de nuevas órdenes y cambios en la prioridad de las órdenes de trabajo. Maestria, Departamento de Ingeniería Industrial, Universidad de los Andes (2006).

[2] N. Al-Hinai and T. El-Mekkawy, An efficient hybridized genetic algorithm architecture for the flexible job shop scheduling problem. Flexible Serv. Manuf. J. 23 (2011) 64–85. | DOI

[3] Ö. Başak and Y. E. Albayrak, Petri net based decision system modeling in real-time scheduling and control of flexible automotive manufacturing systems. Comput. Ind. Eng. 86 (2015) 116–126. | DOI

[4] O. T. Baruwa, M. A. Piera and A. Guasch, Deadlock-free scheduling method for flexible manufacturing systems based on timed colored Petri nets and anytime heuristic search. IEEE Trans. Syst. Man Cybern. 45 (2014) 831–846. | DOI

[5] J. A. Chedid, K. S. Navarro, H. O. Mateus and A. S. Mercado, Reprogramación de producción en cadenas de suministro colaborativas: Una revisión de la literatura. Espacio 38 (2017) 23.

[6] F. Chen and J. Chen, Performance modelling and evaluation of dynamic tool allocation in flexible manufacturing systems using coloured Petri nets: an object-oriented approach. Int. J. Adv. Manuf. Technol. 21 (2003) 98–109. | DOI

[7] J. Chen and F. F. Chen, Adaptive scheduling in random flexible manufacturing systems subject to machine breakdowns. Int. J. Prod. Res. 41 (2003) 1927–1951. | Zbl | DOI

[8] H. Cho, Petri net models for message manipulation and event monitoring in an FMS cell. Int. J. Prod. Res. 36 (1998) 231–250. | Zbl | DOI

[9] C. Cotta, L. Mathieson and P. Moscato, Memetic algorithms. In: Handbook of Heuristics edited by R. Martí, P. M. Pardalos, M. G. C. Resende. Springer, Cham (2018) 607–638. | DOI

[10] B. K. Dey, S. Pareek, M. Tayyab and B. Sarkar, Autonomation policy to control work-in-process inventory in a smart production system. Int. J. Prod. Res. (2020) 1–23. DOI: . | DOI

[11] J. Dorn, R. Kerr and G. Thalhammer, Reactive scheduling: improving the robustness of schedules and restricting the effects of shop floor disturbances by fuzzy reasoning. Int. J. Human-Comput. Stud. 42 (1995) 687–704. | Zbl | DOI

[12] H. A. Elmaraghy and T. Y. Elmekkawy, Deadlock-free rescheduling in flexible manufacturing systems. CIRP Ann. 51 (2002) 371–374. | DOI

[13] M. R. Garey, D. S. Johnson and R. Sethi, The complexity of flowshop and jobshop scheduling. Math. Oper. Res. 1 (1976) 117–129. | MR | Zbl | DOI

[14] P. Garg, A comparison between Memetic algorithm and Genetic algorithm for the cryptanalysis of simplified data encryption standard algorithm. Int. J. Network Secur. App. 1 (2009) 34–42.

[15] A. Gholami, R. Sheikh, N. Mizani and S. S. Sana, ABC analysis of the customers using axiomatic design and incomplete rough set. RAIRO:OR 52 (2018) 1219–1232. | Numdam | DOI

[16] R. Guchhait, B. K. Dey, S. Bhuniya, B. Ganguly, B. Mandal, R. K. Bachar, B. Sarkar, H. M. Wee and K. Chaudhuri, Investment for process quality improvement and setup cost reduction in an imperfect production process with warranty policy and shortages. RAIRO:OR 54 (2020) 251–266. | MR | Zbl | Numdam | DOI

[17] L. Han, K. Xing, X. Chen, H. Lei and F. Wang, Deadlock-free genetic scheduling for flexible manufacturing systems using Petri nets and deadlock controllers. Int. J. Prod. Res. 52 (2014) 1557–1572. | DOI

[18] L. Han, K. Xing, X. Chen and F. Xiong, A Petri net-based particle swarm optimization approach for scheduling deadlock-prone flexible manufacturing systems. J. Intel. Manuf. 29 (2018) 1083–1096. | DOI

[19] S. K. Hasan, R. Sarker and D. Essam, Genetic algorithm for job-shop scheduling with machine unavailability and breakdowns. Int. J. Prod. Res. 49 (2011) 4999–5015. | DOI

[20] I. Hatono, K. Yamagata and H. Tamura, Modeling and online scheduling of flexible manufacturing systems using stochastic Petri nets. IEEE Trans. Softw. Eng. 17 (1991) 126–132. | DOI

[21] H. Hoos and T. Stützle, Stochastic Local Search: Foundations and Applications. Morgan Kaufmann Publishers, San Francisco, CA (2005). | Zbl

[22] B. Huang, Z. Cai, M. Zhou and J. Hao, Scheduling of FMS based on binary decision diagram and Petri net. In: IEEE 15th International Conference on Networking, Sensing and Control (ICNSC). (2018) 1–6.

[23] G. Jamali, S. S. Sana and R. Moghdani, Hybrid improved cuckoo search algorithm and genetic algorithm for solving markov-modulated demand. RAIRO:OR 52 (2018) 473–497. | MR | Numdam | DOI

[24] A. Khanna, P. Gautam, B. Sarkar and C. K. Jaggi, Integrated vendor–buyer strategies for imperfect production systems with maintenance and warranty policy. RAIRO:OR 54 (2020) 435–450. | MR | Numdam | DOI

[25] Y. W. Kim, T. Suzuki and T. Narikiyo, FMS scheduling based on timed Petri Net model and reactive graph search. Appl. Math. Modell. 31 (2007) 955–970. | Zbl | DOI

[26] S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi, Optimization by simulated annealing. Science 220 (1983) 671–680. | MR | Zbl | DOI

[27] R. R. Kumar, A. K. Singh and M. Tiwari, A fuzzy based algorithm to solve the machine-loading problems of a FMS and its neuro fuzzy Petri net model. Int. J. Adv. Manuf. Technol. 23 (2004) 318–341. | DOI

[28] B. S. Kumar, G. J. Raju and G. R. Janardhana, Production planning in flexible manufacturing system by considering the multi-objective functions. In: Advances in Materials and Manufacturing Engineering. Lecture Notes in Mechanical Engineering. (ICAMME 2019) Springer, Singapore (2020) 343–352.

[29] H. Lei, K. Xing, L. Han and Z. Gao, Hybrid heuristic search approach for deadlock-free scheduling of flexible manufacturing systems using Petri nets. Appl. Soft Comput. 55 (2017) 413–423. | DOI

[30] C. Li, W. Wu, Y. Feng and G. Rong, Scheduling FMS problems with heuristic search function and transition-timed Petri nets. J. Intell. Manuf. 26 (2015) 933–944. | DOI

[31] C. Low and T. H. Wu, Mathematical modelling and heuristic approaches to operation scheduling problems in an FMS environment. Int. Jo. Prod. Res. 39 (2001) 689–708. | Zbl | DOI

[32] D. R. Mahapatra, S. Panda and S. S. Sana, Multi-choice and stochastic programming for transportation problem involved in supply of foods and medicines to hospitals with consideration of logistic distribution. RAIRO:OR 54 (2020) 1119–1132. | MR | Numdam | DOI

[33] S. V. Mehta, Predictable scheduling of a single machine subject to breakdowns. Int. J. Comput. Integr. Manuf. 12 (1999) 15–38. | DOI

[34] G. Mejia and J. Acevedo, Reactive scheduling in FMS: an integrated approach based on petri nets, genetic algorithms and simulation. In: Third International Conference on Production Research, Americas’ Region (2006).

[35] G. Mejía and K. Niño, A new Hybrid Filtered Beam Search algorithm for deadlock-free scheduling of flexible manufacturing systems using Petri Nets. Comput. Ind. Eng. 108 (2017) 165–176. | DOI

[36] U. Mishra, J. Z. Wu and B. Sarkar, A sustainable production-inventory model for a controllable carbon emissions rate under shortages. J. Cleaner Prod. 256 (2020) 120268. | DOI

[37] P. Moscato and C. Cotta, Una introducción a los algoritmos meméticos. Intel. Artif. Rev. Iberoamericana Intel. Artif. 7 (2003) 131–148.

[38] T. Murata, Petri nets: properties, analysis and applications. Proc. IEEE 77 (1989) 541–580. | DOI

[39] H. Z. Nabi and T. Aized, Performance evaluation of a carousel configured multiple products flexible manufacturing system using Petri net. Oper. Manag. Res. 13 (2020) 109–129. | DOI

[40] K. S. Navarro, J. A. Chedid, G. M. Árquez, W. F. Florez, H. O. Mateus, S. S. Sana and L. E. Cárdenas-Barrón, An EPQ inventory model considering an imperfect production system with probabilistic demand and collaborative approach. J. Adv. Manage. Res. 17 (2019) 282–304. | DOI

[41] K. S. Navarro, J. A. Chedid, W. F. Florez, H. O. Mateus, L. E. Cárdenas-Barrón and S. S. Sana, A collaborative EPQ inventory model for a three-echelon supply chain with multiple products considering the effect of marketing effort on demand. J. Ind. Manage. Optim. 16 (2020) 1613–1633. | MR | DOI

[42] P. S. Pachpor, R. Shrivastava, D. Seth and S. Pokharel, Application of Petri nets towards improved utilization of machines in job shop manufacturing environments. J. Manuf. Technol. Manage. 28 (2017) 169–188. | DOI

[43] A. M. Patel and A. Y. Joshi, Modeling and analysis of a manufacturing system with deadlocks to generate the reachability tree using Petri net system. Proc. Eng. 64 (2013) 775–784. | DOI

[44] M. Pinedo, Scheduling. Springer, Cham (2012). | MR | Zbl | DOI

[45] M. Pinedo, Planning and Scheduling in Manufacturing and Services. Springer, New York, NY (2005). | MR | Zbl

[46] S. S. Sana, H. Ospina-Mateus, F. G. Arrieta and J. A. Chedid, Application of genetic algorithm to job scheduling under ergonomic constraints in manufacturing industry. J. Ambient Intell. Humanized Comput. 10 (2019) 2063–2090. | DOI

[47] S. S. Sankar, S. Ponnanbalam and C. Rajendran, A multiobjective genetic algorithm for scheduling a flexible manufacturing system. Int. J. Adv. Manuf. Technol. 22 (2003) 229–236. | DOI

[48] S. S. Sankar, S. Ponnambalam and M. Gurumarimuthu, Scheduling flexible manufacturing systems using parallelization of multi-objective evolutionary algorithms. Int. J. Adv. Manuf. Technol. 30 (2006) 279–285. | DOI

[49] B. Santosa, R. Damayanti and B. Sarkar, Solving multi-product inventory ship routing with a heterogeneous fleet model using a hybrid cross entropy-genetic algorithm: a case study in Indonesia Prod. Manuf. Res. 4 (2016) 90–113.

[50] N. Saxena, B. Sarkar and S. Singh, Selection of remanufacturing/production cycles with an alternative market: a perspective on waste management. J. Cleaner Prod. 245 (2020) 118935. | DOI

[51] B. K. Sett, S. Sarkar and B. Sarkar, Optimal buffer inventory and inspection errors in an imperfect production system with preventive maintenance. Int. J. Adv. Manuf. Technol. 90 (2017) 545–560. | DOI

[52] M. Souier, M. Dahane and F. Maliki, An NSGA-II-based multiobjective approach for real-time routing selection in a flexible manufacturing system under uncertainty and reliability constraints. Int. J. Adv. Manuf. Technol. 100 (2019) 2813–2829. | DOI

[53] A. A. Taleizadeh, L. E. Cárdenas-Barrón and B. Mohammadi, A deterministic multi product single machine EPQ model with backordering, scraped products, rework and interruption in manufacturing process. Int. J. Prod. Econ. 150 (2014) 9–27. | DOI

[54] Y. Tanimizu, T. Sakaguchi, K. Iwamura and N. Sugimura, Evolutional reactive scheduling for agile manufacturing systems. Int. J. Prod. Res. 44 (2006) 3727–3742. | Zbl | DOI

[55] E. S. Tashnizi, S. Farahani and A. F. Nahrekhalaji, Production process optimization in flexible manufacturing system using Petri nets. In: Proceedings of the World Congress on Engineering and Computer Science (2008) 22–24.

[56] M. Tayyab, J. Jemai, H. Lim and B. Sarkar, A sustainable development framework for a cleaner multi-item multi-stage textile production system with a process improvement initiative. J. Cleaner Prod. 246 (2020) 119055. | DOI

[57] S. Tian, T. Wang, L. Zhang and X. Wu, Real-time shop floor scheduling method based on virtual queue adaptive control: algorithm and experimental results. Measurement 147 (2019) 106689. | DOI

[58] F. Tüysüz and C. Kahraman, Modeling a flexible manufacturing cell using stochastic Petri nets with fuzzy parameters. Expert Syst. App. 37 (2010) 3910–3920. | DOI

[59] M. Ullah and B. Sarkar, Recovery-channel selection in a hybrid manufacturing-remanufacturing production model with RFID and product quality. Int. J. Prod. Econ. 219 (2020) 360–374. | DOI

[60] G. E. Vieira, J. W. Herrmann and E. Lin, Rescheduling manufacturing systems: a framework of strategies, policies, and methods. J. Schedul. 6 (2003) 39–62. | MR | Zbl | DOI

[61] Z. Zhao, G. Zhang and Z. Bing, Scheduling optimization for FMS based on Petri net modeling and GA. In: IEEE International Conference on Automation and Logistics (ICAL) (2011) 422–427.

Cité par Sources :