Existence of solution of constrained interval optimization problems with regularity concept
RAIRO. Operations Research, Tome 55 (2021), pp. S1997-S2011

Objective of this article is to study the conditions for the existence of efficient solution of interval optimization problem with inequality constraints. Here the active constraints are considered in inclusion form. The regularity condition for the existence of the Karush–Kuhn–Tucker point is derived. This condition depends on the interval-valued gradient function of active constraints. These are new concepts in the literature of interval optimization. gH-differentiability is used for the theoretical developments. gH-pseudo convexity for interval valued constrained optimization problems is introduced to study the sufficient conditions. Theoretical developments are verified through numerical examples.

DOI : 10.1051/ro/2020060
Classification : 90C30, 49M05, 65G30
Keywords: Interval valued function, interval optimization, generalized Hukuhara differentiability, Fritz-John conditions, Karush–Kuhn–Tucker conditions
@article{RO_2021__55_S1_S1997_0,
     author = {Roy, Priyanka and Panda, Geetanjali},
     title = {Existence of solution of constrained interval optimization problems with regularity concept},
     journal = {RAIRO. Operations Research},
     pages = {S1997--S2011},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     doi = {10.1051/ro/2020060},
     mrnumber = {4223165},
     zbl = {1475.90107},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2020060/}
}
TY  - JOUR
AU  - Roy, Priyanka
AU  - Panda, Geetanjali
TI  - Existence of solution of constrained interval optimization problems with regularity concept
JO  - RAIRO. Operations Research
PY  - 2021
SP  - S1997
EP  - S2011
VL  - 55
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2020060/
DO  - 10.1051/ro/2020060
LA  - en
ID  - RO_2021__55_S1_S1997_0
ER  - 
%0 Journal Article
%A Roy, Priyanka
%A Panda, Geetanjali
%T Existence of solution of constrained interval optimization problems with regularity concept
%J RAIRO. Operations Research
%D 2021
%P S1997-S2011
%V 55
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2020060/
%R 10.1051/ro/2020060
%G en
%F RO_2021__55_S1_S1997_0
Roy, Priyanka; Panda, Geetanjali. Existence of solution of constrained interval optimization problems with regularity concept. RAIRO. Operations Research, Tome 55 (2021), pp. S1997-S2011. doi: 10.1051/ro/2020060

[1] I. Ahmad, D. Singh and B. A. Dar, Optimality conditions in multiobjective programming problems with interval valued objective functions. Control Cybern. 44 (2015) 19–45. | MR | Zbl

[2] I. Ahmad, D. Singh, B. A. Dar, Optimality and duality in non-differentiable interval valued multiobjective programming. Int. J. Math. Oper. Res. 11 (2017) 332–356. | MR | Zbl | DOI

[3] H.-S. Ahn, An algorithm to determine linear independence of a set of interval vectors. Appl. Math. Comput. 219 (2013) 10822–10830. | MR | Zbl

[4] H.-S. Ahn, K. L. Moore and Y. Chen, Linear independency of interval vectors and its applications to robust controllability tests. In: Proceedings of the 44th IEEE Conference on Decision and Control. IEEE (2005) 8070–8075.

[5] A. K. Bhurjee and G. Panda, Efficient solution of interval optimization problem. Math. Methods Oper. Res. 76 (2012) 273–288. | MR | Zbl | DOI

[6] Y. Chalco-Cano, H. Román-Flores and M.-D. Jiménez-Gamero, Generalized derivative and π -derivative for set-valued functions. Inf. Sci. 181 (2011) 2177–2188. | MR | Zbl | DOI

[7] Y. Chalco-Cano, W. A. Lodwick and A. Rufian-Lizana, Optimality conditions of type KKT for optimization problem with interval-valued objective function via generalized derivative. Fuzzy Optim. Decis. Making 12 (2013) 305–322. | MR | Zbl | DOI

[8] S. Chanas and D. Kuchta, Multiobjective programming in optimization of interval objective functions, a generalized approach. Eur. J. Oper. Res. 94 (1996) 594–598. | Zbl | DOI

[9] J. Chinneck and K. Ramadan, Linear programming with interval coefficients. J. Oper. Res. Soc. 51 (2000) 209–220. | Zbl | DOI

[10] M. Hladík, Optimal value range in interval linear programming. Fuzzy Optim. Decis. Making 8 (2009) 283–294. | MR | Zbl | DOI

[11] M. Hladík, Optimal value bounds in nonlinear programming with interval data. Top 19 (2011) 93–106. | MR | Zbl | DOI

[12] M. Hukuhara, Integration des applications mesurables dont la valeur est un compact convexe. Funkcial. Ekvac. 10 (1967) 205–223. | MR | Zbl

[13] H. Ishibuchi and H. Tanaka, Multiobjective programming in optimization of the interval objective function. Eur. J. Oper. Res. 48 (1990) 219–225. | Zbl | DOI

[14] W. Li and X. Tian, Numerical solution method for general interval quadratic programming. Appl. Math. Comput. 202 (2008) 589–595. | MR | Zbl

[15] S.-T. Liu and R.-T. Wang, A numerical smolution method to interval quadratic programming. Appl. Math. Comput. 189 (2007) 1274–1281. | MR | Zbl

[16] S. Markov, Calculus for interval functions of a real variable. Computing 22 (1979) 325–337. | MR | Zbl | DOI

[17] R. E. Moore, R. B. Kearfott and M. J. Cloud, Introduction to Interval Analysis. SIAM, Philadelphia, PA (2009). | MR | Zbl

[18] C. Oliveira and C. H. Antunes, Multiple objective linear programming models with interval coefficients – an illustrated overview. Eur. J. Oper. Res. 181 (2007) 1434–1463. | Zbl | DOI

[19] R. Osuna-Gómez, Y. Chalco-Cano, B. Hernández-Jiménez and G. Ruiz-Garzón, Optimality conditions for generalized differentiable interval-valued functions. Inf. Sci. 321 (2015) 136–146. | MR | Zbl | DOI

[20] R. Osuna-Gómez, B. Hernández-Jiménez, Y. Chalco-Cano and G. Ruiz-Garzón, New efficiency conditions for multiobjective interval-valued programming problems. Inf. Sci. 420 (2017) 235–248. | Zbl | DOI

[21] P. Roy and G. Panda, On critical point for functions with bounded parameters. In: 2019 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT). IEEE (2019) 1–5.

[22] P. Roy and G. Panda, Expansion of generalized Hukuhara differentiable interval valued function. New Math. Nat. Comput. 15 (2019) 553–570. | Zbl | DOI

[23] D. Singh, B. A. Dar and A. Goyal, KKT optimality conditions for interval valued optimization problems. J. Nonlinear Anal. Optim.: Theory App. 5 (2014) 91–103. | MR | Zbl

[24] D. Singh, B. A. Dar and D. Kim, KKT optimality conditions in interval valued multiobjective programming with generalized differentiable functions. Eur. J. Oper. Res. 254 (2016) 29–39. | MR | Zbl | DOI

[25] L. Stefanini, A generalization of Hukuhara difference for interval and fuzzy arithmetic. In: Vol. 48 of Soft Methods for Handling Variability and Imprecision. Series on Advances in Soft Computing. Springer, Berlin-Heidelberg (2008). | MR | Zbl

[26] L. Stefanini and B. Bede, Generalized Hukuhara differentiability of interval-valued functions and interval differential equations. Nonlinear Anal.: Theory Methods App. 71 (2009) 1311–1328. | MR | Zbl | DOI

[27] B. Urli and R. Nadeau, An interactive method to multiobjective linear programming problems with interval coefficients. INFOR: Inf. Syst. Oper. Res. 30 (1992) 127–137. | Zbl

[28] H.-C. Wu, The Karush–Kuhn–Tucker optimality conditions in an optimization problem with interval-valued objective function. Eur. J. Oper. Res. 176 (2007) 46–59. | MR | Zbl | DOI

[29] H.-C. Wu, The Karush–Kuhn–Tucker optimality conditions in multiobjective programming problems with interval-valued objective functions. Eur. J. Oper. Res. 196 (2009) 49–60. | MR | Zbl | DOI

[30] J. Zhang, Q. Zheng, C. Zhou, X. Ma and L. Li, On interval-valued pseudolinear functions and interval-valued pseudolinear optimization problems. J. Funct. Spaces 2015 (2015) 610848. | MR | Zbl

Cité par Sources :