Necessary optimality conditions for a fractional multiobjective optimization problem
RAIRO. Operations Research, Tome 55 (2021), pp. S1037-S1049

In this paper, we are concerned with a fractional multiobjective optimization problem (P). Using support functions together with a generalized Guignard constraint qualification, we give necessary optimality conditions in terms of convexificators and the Karush–Kuhn–Tucker multipliers. Several intermediate optimization problems have been introduced to help us in our investigation.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/ro/2020049
Classification : 90C32, 90C46, 90C29, 90C30, 49K99
Keywords: Convexificators, fractional optimization, multiobjective optimization, weak local Pareto minimal points, necessary optimality conditions
@article{RO_2021__55_S1_S1037_0,
     author = {Gadhi, Nazih Abderrazzak and Hamdaoui, Khadija and El Idrissi, Mohammed and Rahou, Fatima Zahra},
     title = {Necessary optimality conditions for a fractional multiobjective optimization problem},
     journal = {RAIRO. Operations Research},
     pages = {S1037--S1049},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     doi = {10.1051/ro/2020049},
     mrnumber = {4223101},
     zbl = {1478.90117},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2020049/}
}
TY  - JOUR
AU  - Gadhi, Nazih Abderrazzak
AU  - Hamdaoui, Khadija
AU  - El Idrissi, Mohammed
AU  - Rahou, Fatima Zahra
TI  - Necessary optimality conditions for a fractional multiobjective optimization problem
JO  - RAIRO. Operations Research
PY  - 2021
SP  - S1037
EP  - S1049
VL  - 55
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2020049/
DO  - 10.1051/ro/2020049
LA  - en
ID  - RO_2021__55_S1_S1037_0
ER  - 
%0 Journal Article
%A Gadhi, Nazih Abderrazzak
%A Hamdaoui, Khadija
%A El Idrissi, Mohammed
%A Rahou, Fatima Zahra
%T Necessary optimality conditions for a fractional multiobjective optimization problem
%J RAIRO. Operations Research
%D 2021
%P S1037-S1049
%V 55
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2020049/
%R 10.1051/ro/2020049
%G en
%F RO_2021__55_S1_S1037_0
Gadhi, Nazih Abderrazzak; Hamdaoui, Khadija; El Idrissi, Mohammed; Rahou, Fatima Zahra. Necessary optimality conditions for a fractional multiobjective optimization problem. RAIRO. Operations Research, Tome 55 (2021), pp. S1037-S1049. doi: 10.1051/ro/2020049

[1] J. Abadie, On the Kuhn–Tucker Theorem, Nonlinear Programming, edited by J. Abadie and S. Vajda. North-Holland Pub. Co., Amsterdam (1967) 19–36. | MR | Zbl

[2] J. Baier and J. Jahn, On subdifferentials of set-valued maps. J. Optim. Theory App. 100 (1999) 233–240. | MR | Zbl | DOI

[3] T. Q. Bao and B. S. Mordukhovich, Existence of minimizers and necessary conditions for set-valued optimization with equilibrium constraints. Appl. Math. 52 (2007) 453–472. | MR | Zbl | DOI

[4] F. C. Clarke, Optimization and Nonsmooth Analysis. Wiley-Interscience, New York, NY (1983). | MR | Zbl

[5] H. W. Corley, Optimality conditions for maximization of set-valued functions. J. Optim. Theory App. 58 (1988) 1–10. | MR | Zbl | DOI

[6] S. Dempe and N. Gadhi, Necessary optimality conditions for bilevel set optimization problems. J. Global Optim. 39 (2007) 529–542. | MR | Zbl | DOI

[7] V. F. Demyanov and V. Jeyakumar, Hunting for a smaller convex subdifferential. J. Global Optim. 10 (1997) 305–326. | MR | Zbl | DOI

[8] P. H. Dien, Locally Lipschitzian set-valued maps and general extremal problems with inclusion constraints. Acta Math. Vietnam. 1 (1983) 109–122. | MR | Zbl

[9] P. H. Dien, On the regularity condition for the extremal problem under locally Lipschitz inclusion constraints. Appl. Math. Optim. 13 (1985) 151–161. | MR | Zbl | DOI

[10] J. Dutta and S. Chandra, Convexificators, generalized convexity and optimality conditions. J. Optim. Theory App. 113 (2002) 41–65. | MR | Zbl | DOI

[11] N. Gadhi, Optimality conditions for the difference of convex set-valued mappings. Positivity 9 (2005) 687–703. | MR | Zbl | DOI

[12] N. Gadhi and A. Jawhar, Necessary optimality conditions for a set-valued fractional extremal programming problem under inclusion constraints. J. Global Optim. 56 (2013) 489–501. | MR | Zbl | DOI

[13] M. A. Hejazi, N. Movahedian and S. Nobakhtian, Multiobjective problems: enhanced necessary conditions and new constraint qualifications via convexificators. Numer. Funct. Anal. Optim. 39 (2018) 11–37. | MR | Zbl | DOI

[14] M. A. Hejazi and S. Nobakhtian, Optimality conditions for multiobjective fractional programming, via convexificators. J. Ind. Manage. Optim. 16 (2020) 623–631. | MR | Zbl | DOI

[15] J.-B. Hiriart-Urruty and C. Lemaréchal, Fundamentals of Convex Analysis. Springer-Verlag, Berlin Heidelberg (2001). | Zbl | DOI

[16] J. Jahn and R. Rauh, Contingent epiderivatives and set-valued optimization. Math. Methods Oper. Res. 46 (1997) 193–211. | MR | Zbl | DOI

[17] V. Jeyakumar and T. Luc, Nonsmooth calculus, minimality and monotonicity of convexificators. J. Optim. Theory App. 101 (1999) 599–621. | MR | Zbl | DOI

[18] B. Kohli, Optimality conditions for optimistic bilevel programming problem using convexificators. J. Optim. Theory App. 152 (2012) 632–651. | MR | Zbl | DOI

[19] C. S. Lalitha, J. Dutta and M. G. Govil, Optimality criteria in set-valued optimization. J. Aust. Math. Soc. 75 (2003) 221–231. | MR | Zbl | DOI

[20] X. F. Li and J. Z. Zhang, Necessary optimality conditions in terms of convexificators in Lipschitz optimization. J. Optim. Theory App. 131 (2006) 429–452. | MR | Zbl | DOI

[21] B. S. Mordukhovich, The extremal principle and its applications to optimization and economics. In: Optimization and Related Topics, edited by A. Rubinov and B. Glover. Vol. 47 of Applied Optimization. Kluwer, Dordrecht (2001) 343–369. | MR | Zbl | DOI

[22] B. S. Mordukhovich and Y. Shao, A nonconvex subdifferential calculus in Banach space. J. Convex Anal. 2 (1995) 211–227. | MR | Zbl

[23] M. Penot, A generalized derivatives for calm and stable functions. Differ. Integral Equ. 5 (1992) 433–454. | MR | Zbl

[24] Y. Sawaragi and T. Tanino, Conjugate maps and duality in multiobjective optimization. J. Optim. Theory App. 31 (1980) 473–499. | MR | Zbl | DOI

[25] A. Taa, Subdifferentials of multifunctions and Lagrange multipliers for multiobjective optimization. J. Math. Anal. App. 283 (2003) 398–415. | MR | Zbl | DOI

Cité par Sources :