Construction of Pseudo CRS frontier for a negative data using RTS model of Allahyar & A modified multiplier BCC model
RAIRO. Operations Research, Tome 55 (2021), pp. S1585-S1603

Performance measurement of Decision Making Units (DMU) possessing an array of positive and negative type of input and output data has been an extensively researched topic in Data Envelopment Analysis. However, assessment of Returns to Scale (RTS) under negative data problem has only been attainable after the deliberation of a Variable Returns to Scale assumption. Steps referred earlier were indeed purported a solution around the vicinity of the Decision Making Unit under examination to predict the nature of the Returns to Scale of a firm. The extant investigation extends the research of Allahyar and Malkhalifeh [Comput. Ind. Eng. 82 (2015) 78–81] to identify a Pseudo Constant Returns to Scale Frontier for a negative data problem along with the new origin based on the provided data. However, this approach seems to be ineffective to create a frontier for multiple input output scenario. In this regard, a new variation of Multiplier form of BCC model is proposed here to detect the new origin for the sake of designing the Pseudo CRS frontier. Small examples are added for the elaboration of the CRS efficient DMUs using methods described by Allahyar and Malkhalifeh [Comput. Ind. Eng. 82 (2015) 78–81] to identify the new origin from the Multiplier form of BCC model. This outcome is finally validated with the aid of the multiplier model of Sahoo et al. [Eur. J. Oper. Res. 255 (2016) 545–558].

DOI : 10.1051/ro/2020039
Classification : 90C08
Keywords: Data Envelopment Analysis, negative data, constant return to scale
@article{RO_2021__55_S1_S1585_0,
     author = {Sarkar, Subhadip},
     title = {Construction of {Pseudo} {CRS} frontier for a negative data using {RTS} model of {Allahyar} & {A} modified multiplier {BCC} model},
     journal = {RAIRO. Operations Research},
     pages = {S1585--S1603},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     doi = {10.1051/ro/2020039},
     mrnumber = {4223164},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2020039/}
}
TY  - JOUR
AU  - Sarkar, Subhadip
TI  - Construction of Pseudo CRS frontier for a negative data using RTS model of Allahyar & A modified multiplier BCC model
JO  - RAIRO. Operations Research
PY  - 2021
SP  - S1585
EP  - S1603
VL  - 55
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2020039/
DO  - 10.1051/ro/2020039
LA  - en
ID  - RO_2021__55_S1_S1585_0
ER  - 
%0 Journal Article
%A Sarkar, Subhadip
%T Construction of Pseudo CRS frontier for a negative data using RTS model of Allahyar & A modified multiplier BCC model
%J RAIRO. Operations Research
%D 2021
%P S1585-S1603
%V 55
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2020039/
%R 10.1051/ro/2020039
%G en
%F RO_2021__55_S1_S1585_0
Sarkar, Subhadip. Construction of Pseudo CRS frontier for a negative data using RTS model of Allahyar & A modified multiplier BCC model. RAIRO. Operations Research, Tome 55 (2021), pp. S1585-S1603. doi: 10.1051/ro/2020039

A. I. Ali and L. M. Seiford, Translation invariance in data envelopment analysis. Oper. Res. Lett. 9 (1990) 403–405. | Zbl | DOI

M. Allahyar and M. R. Malkhalifeh, Negative data in data envelopment analysis: efficiency analysis and estimating return to scale. Comput. Ind. Eng. 82 (2015) 78–81. | DOI

G. R. Amin and S. A. Muharram, A new inverse data envelopment analysis model for mergers with negative data. Inst. Math. App. J. Manage. Math. 29 (2018) 137–149. | MR

J. Aparicio and J. T. Pastor, Closest targets and strong monotonicity on the strongly efficient frontier in DEA. Omega 44 (2014) 51–57. | DOI

R. D. Banker, A. Charnes and W. W. Cooper, Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manage. Sci. 30 (1984) 1078–1092. | Zbl | DOI

P. L. Brockett, A. Charnes, W. W. Cooper, Z. M. Huang and D. B. Sun, Data transformation in DEA cone ratio envelopment approaches for monitoring bank performances. Eur. J. Oper. Res. 98 (1997) 250–268. | Zbl | DOI

R. G. Chambers, Y. Chung and R. Färe, Benefit and distance functions. J. Econ. Theory 70 (1996) 407–419. | Zbl | DOI

R. G. Chambers, Y. Chung and R. Fare, Profit, directional distance functions, and Nerlovian efficiency. J. Optim. Theory App. 98 (1998) 351–364. | MR | Zbl | DOI

A. Charnes, W. W. Cooper and E. Rhodes, Measuring the efficiency of decision-making units. Eur. J. Oper. Res. 2 (1978) 429–444. | MR | Zbl | DOI

A. Charnes, W. W. Cooper, Q. L. Wei and Z. M. Huang, Cone ratio data envelopment analysis and multi-objective programming. Int. J. Syst. Sci. 20 (1989) 1099–1118. | MR | Zbl | DOI

G. Cheng, P. Zervopoulos and Z. Qian, A variant of radial measure capable of dealing with negative inputs and outputs in data envelopment analysis. Eur. J. Oper. Res. 225 (2013) 100–105. | DOI

W. W. Cooper, M. L. Seiford and K. Tone, Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References and DEA-Solver Software. Kluwer Academic Publishers, New York, NY 2 (2011) 42–43. | Zbl

A. Emrouznejad and A. L. Anouze, A semi-oriented radial measure for measuring the efficiency of decision making units with negative data, using DEA. Eur. J. Oper. Res. 200 (2010) 297–304. | Zbl | DOI

R. Färe and S. Grasskoff, Theory and application of directional distance functions. J. Prod. Anal. 13 (2000) 93–103. | DOI

R. Färe, S. Grasskoff and C. A. K. Lovell, The Measurement of Efficiency of Production. Kluwer Nijhoff Publishing, Boston, MA (1985).

R. Färe, S. Grasskoff, C. A. K. Lovell and C. Pasurka, Multilateral productivity comparison when some outputs are undesirable: a non-parametric approach. Rev. Econ. Stat. 71 (1989) 90–98. | DOI

R. Färe, S. Grasskoff and C. A. K. Lovell, Production Frontiers. Cambridge University Press, Cambridge, UK (1994).

M. J. Farrell, The measurement of productive efficiency. J. R. Stat. Soc. Ser.-A 120 (1957) 253–281. | DOI

M. Halme, T. Joro and M. Koivu, Dealing with interval-scale data in data envelopment analysis. Eur. J. Oper. Res. 137 (2002) 22–27. | Zbl | DOI

S. N. Hwang, C. Chen, Y. Chen, H. S. Lee and P. D. Shen, Sustainable design performance evaluation with application in automobile industry: focusing on the inefficiency by undesirable factors. Omega 41 (2013) 553–558. | DOI

A. Koutsoyiannis, Modern Microeconomics, 2nd edition. Macmillan Press Ltd, New York, NY (1979) 76–82.

R. Lin and Z. Chen, A directional distance based super-efficiency DEA model handling negative data. J. Oper. Res. Soc. 68 (2017) 1312–1322. | DOI

D. G. Luenberger, Benefit functions and duality. J. Math. Econ. 21 (1992) 461–481. | MR | Zbl | DOI

R. K. Matin and R. Azizi, Modified semi-oriented Radial Measure for measuring the efficiency of DMUs. In: With 3rd Operation, Research Conference (2010).

M. Mohammadpour, F. Hosseinzadeh-Lotfi and G. R. Jahanshahloo, An extended slacks-based measure model for data envelopment analysis with negative data. J. Oper. Res. Soc. 66 (2015) 1206–1211. | DOI

J. T. Pastor, Efficiency of bank branches through DEA: the attracting of liabilities. Working Paper, Universidad de Alicante, Alicante (1993).

J. T. Pastor, Translation invariance in data envelopment analysis: a generalization. Ann. Oper. Res. 66 (1996) 93–102. | MR | Zbl | DOI

J. T. Pastor and J. L. Ruiz, Variable with negative values in DEA, edited by J. Zhu and W. D. Cook. In: Modeling Data Irregularities and Structural Complexities in Data Envelopment Analysis. Springer, Boston, MA (2007) 63–84. | Zbl

M. C. A. S. Portela, E. Thanassoulis and G. Simpson, Negative data in DEA: a directional distance approach applied to bank branches. J. Oper. Res. Soc. 55 (2004) 1111–1121. | Zbl | DOI

S. C. Ray, Data Envelopment Analysis Theory & Techniques for Economics & Operation Research. Cambridge University Press, New York, NY (2004). | MR | Zbl

B. K. Sahoo, M. Khoveyni, R. Eslami and P. Chaudhury, Returns to scale and most productive scale size in DEA with negative data. Eur. J. Oper. Res. 255 (2016) 545–558. | MR | DOI

H. Scheel, Undesirable outputs in efficiency valuations. Eur. J. Oper. Res. 132 (2001) 400–410. | Zbl | DOI

L. M. Seiford, A bibliography of data envelopment analysis. Working Paper, Department of Industrial Engineering and Operations Research, University of Amherst, MA (1989).

J. A. Sharp, W. B. Lio and W. Meng, A modified slack-based measure model for data envelopment analysis with “natural” negative outputs and input. J. Oper. Res. Soc. 57 (2006) 1–6.

R. W. Shephard, Cost and Production Functions. Princeton University Press, Princeton, NJ (1953). | Zbl

D. A. Starrett, Measuring returns to scale in the aggregate, and the scale effect of public goods. Econometrica 45 (1977) 1439–1455. | MR | Zbl | DOI

R. M. Thrall, The lack of invariance of optimal dual solutions under translation. Ann. Oper. Res. 66 (1996) 103–108. | MR | Zbl | DOI

F. Wei, J. Song, C. Jiao and F. Yang, A modified slacks-based ranking method handling negative data in data envelopment analysis. Willey Expert Syst. 36 (2019) e12329. | DOI

Cité par Sources :