A BRKGA-based matheuristic for the maximum quasi-clique problem with an exact local search strategy
RAIRO. Operations Research, Tome 55 (2021), pp. S741-S763

Given a graph G = (V, E) and a threshold γ ∈ (0, 1], the maximum cardinality quasi- clique problem consists in finding a maximum cardinality subset C* of the vertices in V such that the density of the graph induced in G by C* is greater than or equal to the threshold γ. This problem has a number of applications in data mining, e.g., in social networks or phone call graphs. We propose a matheuristic for solving the maximum cardinality quasi-clique problem, based on the hybridization of a biased random-key genetic algorithm (BRKGA) with an exact local search strategy. The newly proposed approach is compared with a pure biased random-key genetic algorithm, which was the best heuristic in the literature at the time of writing. Computational results show that the hybrid BRKGA outperforms the pure BRKGA.

DOI : 10.1051/ro/2020003
Classification : 05C69, 05C85, 68T20, 90C27, 90C59
Keywords: Maximum quasi-clique problem, maximum clique problem, biased random-key genetic algorithm, metaheuristics, matheuristics
@article{RO_2021__55_S1_S741_0,
     author = {Pinto, Bruno Q. and Ribeiro, Celso C. and Riveaux, Jos\'e A. and Rosseti, Isabel},
     title = {A {BRKGA-based} matheuristic for the maximum quasi-clique problem with an exact local search strategy},
     journal = {RAIRO. Operations Research},
     pages = {S741--S763},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     doi = {10.1051/ro/2020003},
     mrnumber = {4223116},
     zbl = {1469.05135},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2020003/}
}
TY  - JOUR
AU  - Pinto, Bruno Q.
AU  - Ribeiro, Celso C.
AU  - Riveaux, José A.
AU  - Rosseti, Isabel
TI  - A BRKGA-based matheuristic for the maximum quasi-clique problem with an exact local search strategy
JO  - RAIRO. Operations Research
PY  - 2021
SP  - S741
EP  - S763
VL  - 55
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2020003/
DO  - 10.1051/ro/2020003
LA  - en
ID  - RO_2021__55_S1_S741_0
ER  - 
%0 Journal Article
%A Pinto, Bruno Q.
%A Ribeiro, Celso C.
%A Riveaux, José A.
%A Rosseti, Isabel
%T A BRKGA-based matheuristic for the maximum quasi-clique problem with an exact local search strategy
%J RAIRO. Operations Research
%D 2021
%P S741-S763
%V 55
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2020003/
%R 10.1051/ro/2020003
%G en
%F RO_2021__55_S1_S741_0
Pinto, Bruno Q.; Ribeiro, Celso C.; Riveaux, José A.; Rosseti, Isabel. A BRKGA-based matheuristic for the maximum quasi-clique problem with an exact local search strategy. RAIRO. Operations Research, Tome 55 (2021), pp. S741-S763. doi: 10.1051/ro/2020003

J. Abello, M. Resende and S. Sudarsky, Massive quasi-clique detection, edited by J. Abello and J. Vitter. In: Proceedings of the 5th Latin American Symposium on the Theory of Informatics. Springer-Verlag Berlin Heidelberg (2002) 598–612. | MR | Zbl

R. Aiex, M. Resende and C. C. Ribeiro, Probability distribution of solution time in GRASP: an experimental investigation. J. Heuristics 8 (2002) 343–373. | Zbl | DOI

R. Aiex, M. Resende and C. C. Ribeiro, TTT PLOTS: a Perl program to create time-to-target plots. Optim. Lett. 1 (2007) 355–366. | MR | Zbl | DOI

J. C. Bean, Genetic algorithms and random keys for sequencing and optimization. ORSA J. Comput. 2 (1994) 154–160. | Zbl | DOI

BHOSLIB, Benchmarks with hidden optimum solutions for graph problems. http://networkrepository.com/ (2004). Online reference, last visited on June 7, 2018.

J. S. Brandão, T. F. Noronha, M. G. C. Resende and C. C. Ribeiro, A biased random-key genetic algorithm for single-round divisible load scheduling. Int. Trans. Oper. Res. 22 (2015) 823–839. | MR | Zbl | DOI

J. S. Brandão, T. F. Noronha, M. G. C. Resende and C. C. Ribeiro, A biased random-key genetic algorithm for scheduling heterogeneous multi-round systems. Int. Trans. Oper. Res. 27 (2017) 1061–1077. | MR | Zbl | DOI

M. Brunato, H. Hoos and R. Battiti, On effectively finding maximal quasi-cliques in graphs, Learning and Intelligent Optimization edited by V. Maniezzo, R. Battiti and J.-P. Watson. In: Vol. 5313 of Lecture Notes in Computer Science. Springer, Berlin (2008) 41–55. | DOI

T. A. Davis and Y. Hu, The University of Florida sparse matrix collection. ACM Trans. Math. Softw. 38 (2011) 1–25. | MR | Zbl | DOI

FICO, FICO Xpress Optimization Suite 7.6. http://www.fico.com/en/products/fico-xpress-optimization-suite (2017).

J. F. Gonçalves and M. G. C. Resende, Biased random-key genetic algorithms for combinatorial optimization. J. Heuristics 17 (2011) 487–525. | DOI

J. F. Gonçalves, M. G. C. Resende and R. F. Toso, Biased and unbiased random key genetic algorithms: an experimental analysis. In: Abstracts of the 10th Metaheuristics International Conference. Singapore (2013).

H. Hoos and T. Stützle, Evaluation of Las Vegas algorithms – Pitfalls and remedies, edited by G. Cooper and S. Moral. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence. Madison (1998) 238–245.

D. S. Johnson, Cliques, coloring, and satisfiability: second DIMACS implementation challenge. In: Vol. 26 of Dimacs Series in Discrete Mathematics and Theoretical Computer Science. American Mathematical Society, Providence (1996). | Zbl | DOI

R. M. Karp, Reducibility among combinatorial problems. In: Complexity of Computer Computations, edited by R. E. Miller and J. W. Thatcher. Plenum, New York (1972) 85–103. | MR | Zbl | DOI

M. López-Ibánez, J. Dubois-Lacoste, T. Stützle and M. Birattari, The IRACE package: Iterated race for automatic algorithm configuration. Technical Report TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles, Belgium (2011).

T. F. Noronha, M. G. C. Resende and C. C. Ribeiro, A biased random-key genetic algorithm for routing and wavelength assignment. J. Global Optim. 50 (2011) 503–518. | DOI

A. B. Oliveira, A. Plastino and C. C. Ribeiro, Construction heuristics for the maximum cardinality quasi-clique problem. In: Abstracts of the 10th Metaheuristics International Conference. Singapore (2013) 84.

F. M. Pajouh, Z. Miao and B. Balasundaram, A branch-and-bound approach for maximum quasi-cliques. Ann. Oper. Res. 216 (2014) 145–161. | MR | Zbl | DOI

G. Pastukhov, A. Veremyev, V. Boginski and O. A. Prokopyev, On maximum degree-based γ -quasi-clique problem: complexity and exact approaches. Networks 71 (2018) 136–152. | MR | Zbl | DOI

J. Pattillo, A. Veremyev, S. Butenko and V. Boginski, On the maximum quasi-clique problem. Discrete Appl. Math. 161 (2013) 244–257. | MR | Zbl | DOI

L. Pérez Cáceres, M. López-Ibáñez and T. Stützle, An analysis of parameters of IRACE. In: Proceedings of the 14th European Conference on Evolutionary Computation in Combinatorial Optimization. Vol. 8600 of Lecture Notes in Computer Science. Springer, Berlin (2014) 37–48.

B. Q. Pinto, C. C. Ribeiro, I. Rosseti and A. Plastino, A biased random-key genetic algorithm for solving the maximum quasi- clique problem. Eur. J. Oper. Res. 271 (2018) 849–865. | MR | Zbl | DOI

M. G. C. Resende and C. C. Ribeiro, Biased-random key genetic algorithms: an advanced tutorial. In: Proceedings of the 2016 Genetic and Evolutionary Computation Conference – GECCO’16 Companion Volume. Association for Computing Machinery, Denver (2016) 483–514.

C. C. Ribeiro and J. A. Riveaux, An exact algorithm for the maximum quasi-clique problem. Int. Trans. Oper. Res. 26 (2019) 2199–2229. | MR | Zbl | DOI

R. A. Rossi and N. K. Ahmed, Coloring large complex networks. Soc. Network Anal. Min. 4 (2014) 1–37.

R. A. Rossi and N. K. Ahmed, The network data repository with interactive graph analytics and visualization. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence (2015) 4292–4293.

E. C. Sewell, An improved algorithm for exact graph coloring, Cliques, Coloring, and Satisfiability, edited by D. S. Johnson and M. A. Trick. In: Vol. 26 of 2nd DIMACS Implementation Challenge. DIMACS Series in Discrete Mathematics and Theoretical Computer Science. American Mathematical Society (1996) 359–373. | Zbl | DOI

W. Spears and K. De Jong, On the virtues of parameterized uniform crossover, edited by R. Belew and L. Booker. Proceedings of the Fourth International Conference on Genetic Algorithms. Morgan Kaufman, San Mateo (1991) 230–236.

R. F. Toso and M. G. C. Resende, A C++ application programming interface for biased random-key genetic algorithms. Optim. Methods Softw. 30 (2015) 81–93. | DOI

A. Veremyev, O. A. Prokopyev, S. Butenko, and E. L. Pasiliao, Exact MIP-based approaches for finding maximum quasi-clique and dense subgraph. Comput. Optim. App. 64 (2016) 177–214. | MR | Zbl | DOI

Cité par Sources :