Dynamic programming and optimal control for vector-valued functions: A state-of-the-art review
RAIRO. Operations Research, Tome 55 (2021), pp. S351-S364

This paper aims to present a state-of-the-art review of recent development within the areas of dynamic programming and optimal control for vector-valued functions.

DOI : 10.1051/ro/2019085
Classification : 49L20, 90C29, 90C39
Keywords: Dynamic programming, optimal control, calculus of variations, vector-valued functions, multiple objective optimization
@article{RO_2021__55_S1_S351_0,
     author = {Ben Abdelaziz, Fouad and La Torre, Davide and Alaya, Houda},
     title = {Dynamic programming and optimal control for vector-valued functions: {A} state-of-the-art review},
     journal = {RAIRO. Operations Research},
     pages = {S351--S364},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     doi = {10.1051/ro/2019085},
     mrnumber = {4237375},
     zbl = {1472.90148},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2019085/}
}
TY  - JOUR
AU  - Ben Abdelaziz, Fouad
AU  - La Torre, Davide
AU  - Alaya, Houda
TI  - Dynamic programming and optimal control for vector-valued functions: A state-of-the-art review
JO  - RAIRO. Operations Research
PY  - 2021
SP  - S351
EP  - S364
VL  - 55
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2019085/
DO  - 10.1051/ro/2019085
LA  - en
ID  - RO_2021__55_S1_S351_0
ER  - 
%0 Journal Article
%A Ben Abdelaziz, Fouad
%A La Torre, Davide
%A Alaya, Houda
%T Dynamic programming and optimal control for vector-valued functions: A state-of-the-art review
%J RAIRO. Operations Research
%D 2021
%P S351-S364
%V 55
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2019085/
%R 10.1051/ro/2019085
%G en
%F RO_2021__55_S1_S351_0
Ben Abdelaziz, Fouad; La Torre, Davide; Alaya, Houda. Dynamic programming and optimal control for vector-valued functions: A state-of-the-art review. RAIRO. Operations Research, Tome 55 (2021), pp. S351-S364. doi: 10.1051/ro/2019085

[1] F. B. Abdelaziz and H. Masri, A compromise solution for the multiobjective stochastic linear programming under partial uncertainty. Eur. J. Oper. Res. 202 (2010) 55–59. | MR | Zbl | DOI

[2] M. A. Abo-Sinna and M. L. Hussein, Decomposition of multi-objective programming problems by hybrid fuzzy dynamic programming. Fuzzy Sets Syst. 60 (1993) 25–32. | MR | Zbl | DOI

[3] M. A. Abo-Sinna and M. L. Hussein, An algorithm for generating efficient solutions of multi-objective dynamic programming problems. Eur. J. Oper. Res. 80 (1995) 156–165. | Zbl | DOI

[4] S. Anita, V. Arnăutu and V. Capasso, An Introduction to Optimal Control Problems in Life Sciences and Economics: From Mathematical Models to Numerical Simulation with MATLAB. Birkhauser (2011). | MR | Zbl

[5] M. Arana-Jiménez, F. Ortegón Gallego, Duality and weak efficiency in vector variational problems. J. Optim. Theory App. 159 (2013) 547–553. | MR | Zbl | DOI

[6] K. J. Ãström, Introduction to Stochastic Control Theory. Academic Press, Inc., London (1970). | MR | Zbl

[7] R. E. Bellman, Dynamic Programming. Republished 2003: Dover, ISBN 0-486-42809-5. Princeton University Press, Princeton, NJ (1957). | MR | Zbl

[8] F. Ben Abdelaziz, Solution approaches for the multiobjective stochastic programming. Eur. J. Oper. Res. 216 (2012) 1–16. | MR | Zbl | DOI

[9] F. Ben Abdelaziz, P. Lang and R. Nadeau, Dominance and efficiency in multiobjective decision under uncertainty. Theory Decis. 47 (1999) 191–211. | MR | Zbl | DOI

[10] L. Berkovitz and N. Medhin, Nonlinear Optimal Control Theory. Chapman & Hall, CRC Press (2012). | MR | Zbl | DOI

[11] M. A. Branch and A. Grace, MATLAB Optimization Toolbox User’s Guide, Version 1.5. The Mathworks (1996).

[12] A. E. Bryson, Optimal control – 1950 to 1985. IEEE Control Syst. Mag. 16 (1996) 26–33. | DOI

[13] A. E. Bryson and Y. C. Ho, Applied Optimal Control. Hemispheres (1975). | MR

[14] V. Chankong, Y. Y. Haimes and D. M. Gemperline, A multiobjective dynamic programming method for capacity expansion. IEEE Trans. Autom. Control 26 (1981) 1195–1207. | MR | Zbl | DOI

[15] A. Charnes and W. W. Cooper, Chance constraints and normal deviates. J. Am. Stat. Assoc. 57 (1952) 134–148. | MR | Zbl | DOI

[16] A. Chinchuluun, P. M. Pardalos, R. Enkhbat and I. Tseveendori, Optimization and Optimal Control: Theory and Applications. In Vol. 39. Springer (2010). | Zbl

[17] S. Dabia, T. Van Woensel and A. G. De Kok, A dynamic programming approach to multi-objective time-dependent capacitated single vehicle routing problems with time windows. BETA Publicatie: working papers 313 (2010).

[18] V. A. De Oliveira and G. N. Silva, On sufficient optimality conditions for multiobjective control problems. J. Global Optim. 64 (2016) 721–744. | MR | Zbl | DOI

[19] L. D. Elsgolc, Calculus of Variations. Courier Corporation (2012).

[20] A. Gambier and M. Jipp, Multi-objective optimal control: an introduction. In: 2011 8th Asian Control Conference (ASCC). IEEE (2011) 1084–1089.

[21] A. Gambier, A. Wellenreuther and E. Badreddin, A new approach to design multi-loop control systems with multiple controllers. In: Proceedings of the 45th IEEE Conference on Decision and Control, San Diego (2006). | DOI

[22] S. Gass and T. Saaty, The computational algorithm for the parametric objective function. Naval Res. Logistics Q. 2 (1955) 39–45. | MR | DOI

[23] H. P. Geering, Optimal Control with Engineering Applications. Springer (2007). | Zbl

[24] I. M. Gelfand and S. V. Fomin, Calculus of Variations. Dover Publications Inc., New York (2000). | Zbl

[25] I. Ginchev, D. La Torre and M. Rocca, Optimality criteria for multiobjective dynamic optimization programs: the vector-valued ramsey model in Banach spaces, In: Nonlinear Analysis and Convex Analysis. Korea edited by S. Akashi, D. S. Kim, T. H. Kim, G. M. Lee, W. Takahashi and T. Tanaka. (2012) 53–73. | Zbl

[26] Y. Y. Haimes, L. S. Lasdon and D. A. Wismer, On a bicriterion formulation of the problems of integrated system identification and system optimization. IEEE Trans. Syst. Man Cybern. 1 (1971) 296–297. | MR | Zbl

[27] N. B. C Hutauruk and M. Brown, Directed multi-objective optimization for controller design. In: Proc. International Conference on Instrumentation, Communication and Information Technology (ICICI), Bandung, Indonesia. August 3–5 (2005) 751–756.

[28] S. Jacquin, L. Jourdan and E. G. Talbi, A multi-objective dynamic programming-based metaheuristic to solve a bi-objective unit commitment problem using a multi-objective decoder. Int. J. Metaheuristics 5 (2016) 3–30. | DOI

[29] P. Kall and S. W. Wallace, Stochastic Programming. Wiley (1994). | MR | Zbl

[30] S. Krichen and F. Ben Abdelaziz, An optimal stopping problem with two decision makers. Sequential Anal. 26 (2007) 467–480. | MR | Zbl | DOI

[31] R. Klötzler, Multiobjective dynamic programming. Math. Oper. Statist. Ser. Optim. 9 (1978) 423–426. | MR | Zbl

[32] Y. J. Lai and C. L. Hwang, Fuzzy Mathematical Programming, Methods and Applications. Springer-Verlag (1992). | MR | Zbl

[33] S. Lenhart and J. T. Workman, Optimal Control Applied to Biological Models, Mathematical and Computational Biology. Chapman & Hall, Boca Raton, FL, USA; CRC Press, London, UK (2007). | MR | Zbl

[34] D. Liberzon, Switching in Systems and Control. Birkhauser, Boston (2003). | MR | Zbl | DOI

[35] D. Liberzon, Calculus of Variations and Optimal Control Theory. A Concise Introduction. Princeton University Press, Princeton, NJ, USA (2012). | MR | Zbl

[36] G. P. Liu, J. B. Yang and J. F. Whidborne, Multiobjective Optimisation and Control. Research Studies Press Ltd., Exeter (2003).

[37] F. Logist, B. Houska, M. Diehl and J. F. Van Impe, Robust multi-objective optimal control of uncertain (bio) chemical processe. Chem. Eng. Sci. 66 (2011) 4670–4682. | DOI

[38] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko (1964), The Mathematical Theory Of Optimal Processes (translated by D. E. Brown. A Pergamon Press Book). The Macmillan Co., New York (2011).

[39] A. Seierstad and K. Sydsaeter, Optimal Control Theory with Economic Applications. North-Holland, Amsterdam (1987). | MR | Zbl

[40] G. W. Taxue, R. R. Inman and D. M. Mades, Multiobjective dynamic programming with application to a reservoir. Water Resour. Res. 15 (1979) 1403–1408. | DOI

[41] J. Teghem, D. Dufrane, M. Thauvoye and P. Kunsch, Strange: an interactive method for multi-objective linear programming under uncertainty. Eur. J. Oper. Res. 26 (1986) 65–82. | MR | Zbl | DOI

[42] R. Vinter, Optimal Control. Birkhauser (2010). | MR | Zbl

[43] D. W. Walkup and R. J. B. Wets, Stochastic programs with recourse. SIAM J. Appl. Math. 15 (1967) 1299–1314. | MR | Zbl | DOI

[44] Q. Wei, H. Zhang and J. Dai, Model-free multiobjective approximate dynamic programming for discrete-time nonlinear systems with general performance index functions. Neurocomputing 72 (2009) 1839–1848. | DOI

[45] H. Zarei and M. R. Bahrmand, Multiobjective optimal control of the linear wave equation. Ain Shams Eng. J. 5 (2014) 1299–1305. | DOI

[46] A. M. Zohrevand, H. Rafiei and A. H. Zohrevand, Multiobjective dynamic cell formation problem: a stochastic programming approach. Comput. Ind. Eng. 98 (2016) 323–332. | DOI

Cité par Sources :