The st-bond polytope of a graph is the convex hull of the incidence vectors of its st-bonds, where an st-bond is a minimal st-cut. In this paper, we provide a linear description of the st-bond polytope on series-parallel graphs. We also show that the st-bond polytope is the intersection of the st-cut dominant and the bond polytope.
Accepté le :
DOI : 10.1051/ro/2018035
Keywords: Bond, minimal st-cut, st-bond polytope, series-parallel graph
Grappe, Roland 1 ; Lacroix, Mathieu 1
@article{RO_2018__52_3_923_0,
author = {Grappe, Roland and Lacroix, Mathieu},
title = {The st-bond polytope on series-parallel graphs},
journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
pages = {923--934},
year = {2018},
publisher = {EDP Sciences},
volume = {52},
number = {3},
doi = {10.1051/ro/2018035},
zbl = {1405.90112},
mrnumber = {3868452},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ro/2018035/}
}
TY - JOUR AU - Grappe, Roland AU - Lacroix, Mathieu TI - The st-bond polytope on series-parallel graphs JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2018 SP - 923 EP - 934 VL - 52 IS - 3 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ro/2018035/ DO - 10.1051/ro/2018035 LA - en ID - RO_2018__52_3_923_0 ER -
%0 Journal Article %A Grappe, Roland %A Lacroix, Mathieu %T The st-bond polytope on series-parallel graphs %J RAIRO - Operations Research - Recherche Opérationnelle %D 2018 %P 923-934 %V 52 %N 3 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ro/2018035/ %R 10.1051/ro/2018035 %G en %F RO_2018__52_3_923_0
Grappe, Roland; Lacroix, Mathieu. The st-bond polytope on series-parallel graphs. RAIRO - Operations Research - Recherche Opérationnelle, Tome 52 (2018) no. 3, pp. 923-934. doi: 10.1051/ro/2018035
[1] , Disjunctive programming and a hierarchy of relaxations for discrete optimization problems. SIAM J. Algebr. Discrete Methods 6 (1985) 466–486. | Zbl | MR | DOI
[2] , Disjunctive programming: properties of the convex hull of feasible points. Discrete Appl. Math. 89 (1998) 1–44. | Zbl | MR | DOI
[3] and , On the cut polytope. Math. Program. 36 (1986) 157–73. | Zbl | MR | DOI
[4] , , and , Lexicographical polytopes. Discrete Appl. Math. 240 (2018) 3–7. | Zbl | MR | DOI
[5] , , , and , Circuit and bond polytopes on series-parallel graphs. Discrete Optim. 17 (2015) 55–68. | Zbl | MR | DOI
[6] , The concavity and intersection properties for integral polyhedra, in Combinatorics 79. Part I. Vol 8 of Ann. Discrete Math. North-Holland, Amsterdam (1980) 221–228. | Zbl | MR | DOI
[7] , and , When the cut condition is enough: a complete characterization for multiflow problems in series-parallel networks, in Proc. of the 44th Symposium on Theory of Computing STOC’12 (2012) 19–26. | Zbl | MR | DOI
[8] , Topology of series-parallel networks. J. Math. Anal. Appl. 10 (1965) 303–318. | Zbl | MR | DOI
[9] , Submodular functions, matroids and certain polyhedra, in Combinatorial Structures and their Applications. (1970) 69–87. | Zbl | MR
[10] , Parallel recognition of series-parallel graphs. Inf. Comput. 98 (1992) 41–55. | Zbl | MR | DOI
[11] and , Maximal flow through a network. Can. J. Math. 8 (1956) 399–404. | Zbl | MR | DOI
[12] , Solution d’une question particuliere du calcul des inégalités. Nouveau Bulletin des Sciences par la Société philomatique de Paris (1826) 99–100.
[13] and , Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979). | Zbl | MR
[14] , and , The planar Hamiltonian circuit problem is NP-complete. SIAM J. Comput. 5 (1976) 704–714. | Zbl | MR | DOI
[15] , Finding a maximum cut of planar graph in polynomial time. SIAM J. Comput. 4 (1975) 221–225. | Zbl | MR | DOI
[16] , Sur le problème des courbes gauches en topologie. Fundam. Math. 15 (1930) 271–283. | JFM | DOI
[17] , Combinatorial Optimization. Springer-Verlag, Berlin, Heidelberg (2003). | Zbl
[18] and , On the dominant of the s-t-cut polytope: vertices, facets, and adjacency. Math. Program. 124 (2010) 441–454. | Zbl | MR | DOI
Cité par Sources :






