The aim of this note is to present some second-order Karush–Kuhn–Tucker necessary optimality conditions for vector optimization problems, which modify the incorrect result in ((10), Thm. 3.2).
Accepté le :
DOI : 10.1051/ro/2017026
Keywords: Second-order regularity conditions, second-order Karush–Kuhn–Tucker optimality conditions, efficient solution, geoffrion properly efficient solution
Kim, Do Sang 1 ; Tuyen, Nguyen Van 1
@article{RO_2018__52_2_567_0,
author = {Kim, Do Sang and Tuyen, Nguyen Van},
title = {A note on second-order {Karush{\textendash}Kuhn{\textendash}Tucker} necessary optimality conditions for smooth vector optimization problems},
journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
pages = {567--575},
year = {2018},
publisher = {EDP Sciences},
volume = {52},
number = {2},
doi = {10.1051/ro/2017026},
mrnumber = {3880545},
zbl = {1401.90207},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ro/2017026/}
}
TY - JOUR AU - Kim, Do Sang AU - Tuyen, Nguyen Van TI - A note on second-order Karush–Kuhn–Tucker necessary optimality conditions for smooth vector optimization problems JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2018 SP - 567 EP - 575 VL - 52 IS - 2 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ro/2017026/ DO - 10.1051/ro/2017026 LA - en ID - RO_2018__52_2_567_0 ER -
%0 Journal Article %A Kim, Do Sang %A Tuyen, Nguyen Van %T A note on second-order Karush–Kuhn–Tucker necessary optimality conditions for smooth vector optimization problems %J RAIRO - Operations Research - Recherche Opérationnelle %D 2018 %P 567-575 %V 52 %N 2 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ro/2017026/ %R 10.1051/ro/2017026 %G en %F RO_2018__52_2_567_0
Kim, Do Sang; Tuyen, Nguyen Van. A note on second-order Karush–Kuhn–Tucker necessary optimality conditions for smooth vector optimization problems. RAIRO - Operations Research - Recherche Opérationnelle, Tome 52 (2018) no. 2, pp. 567-575. doi: 10.1051/ro/2017026
[1] and , Second order optimality conditions for differentiable multiobjective problems. RAIRO: OR 34 (2000) 411–426 | MR | Zbl | Numdam | DOI
[2] and , Uniqueness of KKT multipliers in multiobjective optimization. Appl. Math. Lett. 17 (2004) 1285–1290. | MR | Zbl
[3] and , On weak and strong Kuhn-Tucker conditions for smooth multiobjective optimization. J. Optim. Theory Appl. 155 (2012) 477–491 | MR | Zbl | DOI
[4] , and , Strong Kuhn-Tucker conditions and constraint qualifications in locally Lipschitz multiobjective optimization problem. Top. 17 (2009) 288–304 | MR | Zbl | DOI
[5] and , Nonsmooth multiobjective programming: strong KuhnTucker conditions. Positivity 17 (2013) 711–732 | MR | Zbl | DOI
[6] , Constraint qualification in multiobjective optimization problems: differentiable case. J. Optim. Theory Appl. 80 (1994) 483–500 | MR | Zbl | DOI
[7] , Second-order conditions for efficiency in nonsmooth multiobjective optimization. J. Optim. Theory Appl. 122 (2004) 521–538 | MR | Zbl | DOI
[8] , Nonlinear Programming. McGraw-Hill, New York (1969) | Zbl
[9] and , On constraint qualification in multiobjective optimization problems: semidifferentiable case. J. Optimiz. Theory Appl. 100 (1999) 417–433 | Zbl | DOI
[10] and , New second-order optimality conditions in multiobjective optimization problems: differentiable case. J. Indian Inst. Sci. 86 (2006) 279–286 | Zbl
[11] , Second order necessary and sufficient conditions in multiobjective programming. Numer. Funct. Anal. Optim. 12 (1991) 237–252 | Zbl | DOI
Cité par Sources :





