A graph of even order is -extendable if it is of order at least , contains a matching of size , and if every such matching is contained in a perfect matching of . In this paper, we study the extendability of lexicographic products of graphs. We characterize graphs and such that their lexicographic product is not -extendable. We also provide several conditions on the graphs and under which their lexicographic product is -extendable.
Accepté le :
DOI : 10.1051/ro/2016072
Keywords: ℓ-extendable graphs, lexicographic product, Tutte’s Theorem
Chiarelli, Nina 1 ; Dibek, Cemil 2 ; Ekim, Tınaz 2 ; Gözüpek, Didem 3 ; Miklavič, Štefko 4
@article{RO_2017__51_3_857_0,
author = {Chiarelli, Nina and Dibek, Cemil and Ekim, T{\i}naz and G\"oz\"upek, Didem and Miklavi\v{c}, \v{S}tefko},
title = {On matching extendability of lexicographic products},
journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
pages = {857--873},
year = {2017},
publisher = {EDP Sciences},
volume = {51},
number = {3},
doi = {10.1051/ro/2016072},
zbl = {1387.05193},
mrnumber = {3880529},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ro/2016072/}
}
TY - JOUR AU - Chiarelli, Nina AU - Dibek, Cemil AU - Ekim, Tınaz AU - Gözüpek, Didem AU - Miklavič, Štefko TI - On matching extendability of lexicographic products JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2017 SP - 857 EP - 873 VL - 51 IS - 3 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ro/2016072/ DO - 10.1051/ro/2016072 LA - en ID - RO_2017__51_3_857_0 ER -
%0 Journal Article %A Chiarelli, Nina %A Dibek, Cemil %A Ekim, Tınaz %A Gözüpek, Didem %A Miklavič, Štefko %T On matching extendability of lexicographic products %J RAIRO - Operations Research - Recherche Opérationnelle %D 2017 %P 857-873 %V 51 %N 3 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ro/2016072/ %R 10.1051/ro/2016072 %G en %F RO_2017__51_3_857_0
Chiarelli, Nina; Dibek, Cemil; Ekim, Tınaz; Gözüpek, Didem; Miklavič, Štefko. On matching extendability of lexicographic products. RAIRO - Operations Research - Recherche Opérationnelle, Tome 51 (2017) no. 3, pp. 857-873. doi: 10.1051/ro/2016072
, , and , Lexicographic product of extendable graphs. Bull. Malays. Math. Sci. Soc. 33 (2010) 197–204. | Zbl | MR
, and , On 2-extendable Abelian Cayley graphs. Discrete Math. 146 (1995) 19–32. | Zbl | MR | DOI
and , On the strong product of a -extendable and an -extendable graph. Graphs Combin. 17 (2001) 245–253. | Zbl | MR | DOI
and , The Cartesian product of a -extendable and -extendable graph is -extendable. Discrete Math. 101 (1992) 87–96. | Zbl | MR | DOI
W. Imrich and S. Klavžar, Product Graphs, structure and recognition. John Wiley & Sons, Inc., New York (2000). | Zbl | MR
, and , On defect- matchings in graphs. Discrete Math. 13 (1975) 41–54. | Zbl | MR | DOI
and , Matching extensions and products of graphs. Ann. Discrete Math. 55 (1993) 191–200. | Zbl | MR | DOI
. On -extendable graphs. Discrete Math. 31 (1980) 201–210. | Zbl | MR | DOI
, The factorization of linear graphs. J. London Math. Soc. 22 (1947) 107–111. | Zbl | MR | DOI
Q.R. Yu and G. Liu, Graph Factors and Matching Extensions. Springer-Verlag, Berlin (2010). | Zbl | MR
Cité par Sources :






