In this paper, we show how optimization methods can be used efficiently to determine the parameters of an oscillatory model of handwriting. Because these methods have to be used in real-time applications, this involves that the optimization problems must be rapidely solved. Hence, we developed an original heuristic algorithm, named FHA. This code was validated by comparing it (accuracy/CPU-times) with a multistart method based on Trust Region Reflective algorithm.
Keywords: handwriting model, nonlinear programming, heuritic method, multistart method
@article{RO_2014__48_4_509_0,
author = {Andr\'e, Ga\"etan and Messine, Fr\'ed\'eric},
title = {On finding optimal parameters of an oscillatory model of handwriting},
journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
pages = {509--520},
year = {2014},
publisher = {EDP Sciences},
volume = {48},
number = {4},
doi = {10.1051/ro/2014020},
mrnumber = {3264391},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ro/2014020/}
}
TY - JOUR AU - André, Gaëtan AU - Messine, Frédéric TI - On finding optimal parameters of an oscillatory model of handwriting JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2014 SP - 509 EP - 520 VL - 48 IS - 4 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ro/2014020/ DO - 10.1051/ro/2014020 LA - en ID - RO_2014__48_4_509_0 ER -
%0 Journal Article %A André, Gaëtan %A Messine, Frédéric %T On finding optimal parameters of an oscillatory model of handwriting %J RAIRO - Operations Research - Recherche Opérationnelle %D 2014 %P 509-520 %V 48 %N 4 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ro/2014020/ %R 10.1051/ro/2014020 %G en %F RO_2014__48_4_509_0
André, Gaëtan; Messine, Frédéric. On finding optimal parameters of an oscillatory model of handwriting. RAIRO - Operations Research - Recherche Opérationnelle, Tome 48 (2014) no. 4, pp. 509-520. doi: 10.1051/ro/2014020
[1] G. André, www.irit.fr/∼Gaetan.Andre/publications.php.
[2] and , An interior trust region approach for nonlinear minimization subject to bounds. SIAM J. Opt. 6 (1993) 418-445. | Zbl | MR
[3] and , On the convergence of interior-reflective Newton methods for nonlinear minimization subject to bounds. Math. Program. 67 (1994) 189-224. | Zbl | MR
[4] , Modélisation bayésienne d'une boucle de perception action : Application al'écriture (Bayesian Modelisation of a sensori-motor loop: application to reading and handwriting). Thesis, Joseph, Fourier University, Grenoble, France (2009).
[5] , An oscillatory theory of handwriting. Biol. Cybern. 156 (1981) 139-156.
[6] et al., The imprint of action: motor cortex involvement in visual perception of handwritten letters. NeuroImage 23 (2006) 681-688.
[7] et al., Modelling velocity profiles of rapid movements: a comparative study. Biol. Cybern. 69 (1993) 119-128.
[8] , On-Line and Off-Line, Handwriting Recognition: A Comprehensive Survey. IEEE Trans. Pattern Anal. Mach. Intell. 22 (2000) 63-84.
[9] and , Markov models for offline handwriting recognition: a survey. Int. J. Doc. Anal. Recogn. (IJDAR) 12 (2009) 169-298.
[10] and , Minimum-jerk, two-thirds power law, and isochrony: converging approaches to movement planning. J. Exp. Psychol. Hum. Percept. Perform. 21 (1995) 32-53.
Cité par Sources :






