This paper studies the existence and the order structure of strong Berge equilibrium, a refinement of Nash equilibrium, for games with strategic complementarities à la strong Berge. It is shown that the equilibrium set is a nonempty complete lattice. Moreover, we provide a monotone comparative statics result such that the greatest and the lowest equilibria are increasing.
Keywords: strong Berge equilibrium, refinement, games with strategic complementarities, fixed point theory, supermodularity
@article{RO_2014__48_3_373_0,
author = {Keskin, Kerim and \c{C}a\u{g}r{\i} Sa\u{g}lam, H.},
title = {Complementarities and the existence of strong {Berge} equilibrium},
journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
pages = {373--379},
year = {2014},
publisher = {EDP Sciences},
volume = {48},
number = {3},
doi = {10.1051/ro/2014012},
mrnumber = {3264384},
zbl = {1296.91012},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ro/2014012/}
}
TY - JOUR AU - Keskin, Kerim AU - Çağrı Sağlam, H. TI - Complementarities and the existence of strong Berge equilibrium JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2014 SP - 373 EP - 379 VL - 48 IS - 3 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ro/2014012/ DO - 10.1051/ro/2014012 LA - en ID - RO_2014__48_3_373_0 ER -
%0 Journal Article %A Keskin, Kerim %A Çağrı Sağlam, H. %T Complementarities and the existence of strong Berge equilibrium %J RAIRO - Operations Research - Recherche Opérationnelle %D 2014 %P 373-379 %V 48 %N 3 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ro/2014012/ %R 10.1051/ro/2014012 %G en %F RO_2014__48_3_373_0
Keskin, Kerim; Çağrı Sağlam, H. Complementarities and the existence of strong Berge equilibrium. RAIRO - Operations Research - Recherche Opérationnelle, Tome 48 (2014) no. 3, pp. 373-379. doi: 10.1051/ro/2014012
[1] , Théorie Générale des Jeux à n Personnes, Gautier Villars, Paris (1957). | Zbl | MR | Numdam
[2] , Non-cooperative games. Annal. Math. 54 (1951) 286-295. | Zbl | MR
[3] , Acceptable points in a general cooperative n-person games. in Contributions to the Theory of Games IV. Annal. Math. Study 40 (1959) 287-324. | Zbl | MR
[4] , and , Strong Berge equilibrium and strong Nash equilibrium: Their relation and existence, in Game Theory Appl., edited by L.A. Petrosjan and V.V. Mazalov. Vol. 15. Nova Science Publishers (2012) 165-180.
[5] and , Sur l'équilibre fort selon Berge. RAIRO Oper. Res. 35 (2001) 439-451. | Zbl | MR | Numdam
[6] and , Intersection theorems and their applications to Berge equilibria. Appl. Math. Comput. 182 (2006) 1840-1848. | Zbl | MR
[7] and , On the existence of Berge's strong equilibrium. Int. Game Theory Rev. 13 (2011) 325-340. | Zbl | MR
[8] , The set of Nash equilibria of a supermodular game is a complete lattice. Games Econ. Behavior 7 (1994) 295-300. | Zbl | MR
[9] , A short and constructive proof of Tarski's fixed-point theorem. Int. J. Game Theory 33 (2005) 215-218. | Zbl | MR
[10] , Supermodularity and Complementarity, Princeton University Press, Princeton (1998). | MR
[11] , Complementarities and games: New developments. J. Econ. Literature 43 (2005) 437-479.
[12] , Coordination Games: Complementarities and Macroeconomics, Cambridge University Press, Cambridge (1999). | Zbl
Cité par Sources :





