We consider the approximation of a mean field stochastic process by a large interacting particle system. We derive non-asymptotic large deviation bounds measuring the concentration of the empirical measure of the paths of the particles around the law of the process. The method is based on a coupling argument, strong integrability estimates on the paths in Hölder norm, and a general concentration result for the empirical measure of identically distributed independent paths.
Keywords: mean field limits, particle approximation, transportation inequalities
@article{PS_2010__14__192_0,
author = {Bolley, Fran\c{c}ois},
title = {Quantitative concentration inequalities on sample path space for mean field interaction},
journal = {ESAIM: Probability and Statistics},
pages = {192--209},
year = {2010},
publisher = {EDP Sciences},
volume = {14},
doi = {10.1051/ps:2008033},
mrnumber = {2741965},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ps:2008033/}
}
TY - JOUR AU - Bolley, François TI - Quantitative concentration inequalities on sample path space for mean field interaction JO - ESAIM: Probability and Statistics PY - 2010 SP - 192 EP - 209 VL - 14 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ps:2008033/ DO - 10.1051/ps:2008033 LA - en ID - PS_2010__14__192_0 ER -
%0 Journal Article %A Bolley, François %T Quantitative concentration inequalities on sample path space for mean field interaction %J ESAIM: Probability and Statistics %D 2010 %P 192-209 %V 14 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ps:2008033/ %R 10.1051/ps:2008033 %G en %F PS_2010__14__192_0
Bolley, François. Quantitative concentration inequalities on sample path space for mean field interaction. ESAIM: Probability and Statistics, Tome 14 (2010), pp. 192-209. doi: 10.1051/ps:2008033
[1] , , and , Nonlinear self-stabilizing processes. I: Existence, invariant probability, propagation of chaos. Stoch. Proc. Appl. 75 (1998) 173-201. | Zbl
[2] , , and , A non-Maxwellian steady distribution for one-dimensional granular media. J. Statist. Phys. 91 (1998) 979-990. | Zbl
[3] and , Exponential integrability and transportation cost related to logarithmic Sobolev inequalities. J. Funct. Anal. 163 (1999) 1-28. | Zbl
[4] , Quantitative concentration inequalities on sample path space for mean field interaction. Available online at www.ceremade.dauphine.fr/~bolley (2008). | Numdam
[5] and , Weighted Csiszár-Kullback-Pinsker inequalities and applications to transportation inequalities. Ann. Fac. Sci. Toulouse Math. 6 (2005) 331-352. | Zbl | Numdam
[6] , and , Quantitative concentration inequalities for empirical measures on non-compact spaces. Probab. Theory Relat. Fields 137 (2007) 541-593. | Zbl
[7] , and , Contractions in the 2-Wasserstein length space and thermalization of granular media. Arch. Rat. Mech. Anal. 179 (2006) 217-263. | Zbl
[8] , and , Probabilistic approach for granular media equations in the non uniformly case. Probab. Theory Relat. Fields 140 (2008) 19-40. | Zbl
[9] and , Large deviations techniques and applications. Springer, NewYork (1998). | Zbl
[10] , and , Transportation cost-information inequalities and applications to random dynamical systems and diffusions. Ann. Probab. 32 (2004) 2702-2732. | Zbl
[11] , Free energy and solutions of the Vlasov-Poisson-Fokker-Planck system: external potential and confinement (large time behavior and steady states). J. Math. Pures Appl. 9 (1999) 121-157. | Zbl
[12] , Régularité des trajectoires des fonctions aléatoires gaussiennes. Lect. Notes Math. 480. Springer, Berlin (1975). | Zbl
[13] , Principe conditionnel de Gibbs pour des contraintes fines approchées et inégalités de transport. Thèse de doctorat de l'Université de Paris 10-Nanterre, 2005).
[14] and , A general classification rule for probability measures. Ann. Statist. 23 (1995) 1393-1407. | Zbl
[15] , Approximation of functions. Holt, Rinehart and Winston, New York (1966). | Zbl
[16] , Logarithmic Sobolev inequalities for some nonlinear PDE's. Stoch. Proc. Appl. 95 (2001) 109-132. | Zbl
[17] , Asymptotic behaviour of some interacting particle systems; McKean-Vlasov and Boltzmann models. Lect. Notes Math. 1627. Springer, Berlin (1996). | Zbl
[18] , Topics in propagation of chaos. Lect. Notes Math. 1464. Springer, Berlin (1991). | Zbl
[19] and , Weak convergence and empirical processes. Springer, Berlin (1995). | Zbl
[20] , Topics in optimal transportation, volume 58 of Grad. Stud. Math. A.M.S., Providence (2003). | Zbl
Cité par Sources :






