We prove a central limit theorem for linear triangular arrays under weak dependence conditions. Our result is then applied to dependent random variables sampled by a -valued transient random walk. This extends the results obtained by [N. Guillotin-Plantard and D. Schneider, Stoch. Dynamics 3 (2003) 477-497]. An application to parametric estimation by random sampling is also provided.
Keywords: random walks, weak dependence, central limit theorem, dynamical systems, random sampling, parametric estimation
@article{PS_2010__14__299_0,
author = {Guillotin-Plantard, Nadine and Prieur, Cl\'ementine},
title = {Central limit theorem for sampled sums of dependent random variables},
journal = {ESAIM: Probability and Statistics},
pages = {299--314},
year = {2010},
publisher = {EDP Sciences},
volume = {14},
doi = {10.1051/ps:2008030},
mrnumber = {2779486},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ps:2008030/}
}
TY - JOUR AU - Guillotin-Plantard, Nadine AU - Prieur, Clémentine TI - Central limit theorem for sampled sums of dependent random variables JO - ESAIM: Probability and Statistics PY - 2010 SP - 299 EP - 314 VL - 14 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ps:2008030/ DO - 10.1051/ps:2008030 LA - en ID - PS_2010__14__299_0 ER -
%0 Journal Article %A Guillotin-Plantard, Nadine %A Prieur, Clémentine %T Central limit theorem for sampled sums of dependent random variables %J ESAIM: Probability and Statistics %D 2010 %P 299-314 %V 14 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ps:2008030/ %R 10.1051/ps:2008030 %G en %F PS_2010__14__299_0
Guillotin-Plantard, Nadine; Prieur, Clémentine. Central limit theorem for sampled sums of dependent random variables. ESAIM: Probability and Statistics, Tome 14 (2010), pp. 299-314. doi: 10.1051/ps:2008030
[1] , and , Iterates of expanding maps. Probab. Theory Relat. Fields 116 (2000) 151-180. | Zbl
[2] , , and , Dependent Linderberg central limit theorem and some applications. ESAIM: PS 12 (2008) 154-172. | Zbl
[3] , Random walks with stationary increments and renewal theory. Math. Centre Tracts 112, Amsterdam (1979). | Zbl
[4] , and , Exponential inequalities for dynamical measures of expanding maps of the interval. Probab. Theory. Relat. Fields 123 (2002) 301-322. | Zbl
[5] and , A triangular CLT for weakly dependent sequences. Statist. Probab. Lett. 47 (2000) 61-68. | Zbl
[6] and , Problèmes à temps mobile. Deuxième édition. Masson (1993).
[7] and , New dependence coefficients, Examples and applications to statistics. Probab. Theory Relat. Fields 132 (2005) 203-236. | Zbl
[8] , , , , and , Weak dependence: With Examples and Applications. Lect. Notes in Stat. 190. Springer, XIV (2007). | Zbl
[9] , and , Estimation de paramètre par échantillonnage aléatoire. (French. English summary) [Random sampling and parametric estimation]. C. R. Acad. Sci. Paris Sér. I Math. 306 (1988) 565-568. | Zbl
[10] and , A new weak dependence condition and applications to moment inequalities. Stochastic Process. Appl. 84 (1999) 313-342. | Zbl
[11] and , Limit theorems for sampled dynamical systems. Stoch. Dynamics 3 (2003) 477-497. | Zbl
[12] and , Ergodic properties of invariant measures for piecewise monotonic transformations. Math. Z. 180 (1982) 119-140. | Zbl
[13] , Some limit theorems for stationary processes. Theory Probab. Appl. 7 (1962) 349-382. | Zbl
[14] , The ergodic theory of subadditive stochastic processes. J. R. Statist. Soc. B 30 (1968) 499-510. | Zbl
[15] , On weak convergence in dynamical systems to self-similar processes with spectral representation. Trans. Amer. Math. Soc. 328 (1991) 767-778. | Zbl
[16] , , and , Random ergodic theorems with universally representative sequences. Ann. Inst. H. Poincaré Probab. Statist. 30 (1994) 353-395. | Zbl | Numdam
[17] and , On the existence of invariant measures for piecewise monotonic transformations. Trans. Amer. Math. Soc. 186 (1974) 481-488. | Zbl
[18] and , On the coupling of dependent random variables and applications. Empirical process techniques for dependent data. Birkhäuser, Boston (2002), pp. 171-193. | Zbl
[19] , Local limit theorem and distribution of periodic orbits of Lasota-Yorke transformations with infinite Markov partition. J. Math. Soc. Jpn 46 (1994) 309-343. | Zbl
[20] and , Central limit theorem for linear processes. Ann. Probab. 25 (1997) 443-456. | Zbl
[21] , About the Lindeberg method for strongly mixing sequences. ESAIM: PS 1 (1995) 35-61. | Zbl | Numdam
[22] , A central limit theorem and a strong mixing condition. Proc. Natl. Acad. Sci. USA 42 (1956) 43-47. | Zbl
[23] and , Some limit theorems for random functions I. Theory Probab. Appl. 4 (1959) 178-197. | Zbl
[24] , On local and ratio limit theorems. Proc. Fifth Berkeley Symp. Math. Statist. Probab. Univ. Californie (1966), pp. 217-224. | Zbl
[25] , Central limit theorem for dependent random variables. Probab. Theory Math. Statist. 2 (1990) 519-528. | Zbl
[26] , Sums of random variables with -mixing. Siberian Adv. Math. 1 (1991) 124-155. | Zbl
[27] , Central limit theorems for dependent variables. I. Z. Wahrsch. Verw. Gebiete 57 (1981) 509-534 (corrigendum in Z. Wahrsch. Verw. Gebiete 63 (1983) 555). | Zbl
Cité par Sources :






