We propose some construction of enhanced gaussian processes using Karhunen-Loeve expansion. We obtain a characterization and some criterion of existence and uniqueness. Using rough-path theory, we derive some Wong-Zakai Theorem.
Keywords: gaussian processes, Volterra processes, rough path theory
@article{PS_2009__13__247_0,
author = {Coutin, Laure and Victoir, Nicolas},
title = {Enhanced gaussian processes and applications},
journal = {ESAIM: Probability and Statistics},
pages = {247--260},
year = {2009},
publisher = {EDP Sciences},
volume = {13},
doi = {10.1051/ps:2008007},
mrnumber = {2528082},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ps:2008007/}
}
TY - JOUR AU - Coutin, Laure AU - Victoir, Nicolas TI - Enhanced gaussian processes and applications JO - ESAIM: Probability and Statistics PY - 2009 SP - 247 EP - 260 VL - 13 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ps:2008007/ DO - 10.1051/ps:2008007 LA - en ID - PS_2009__13__247_0 ER -
Coutin, Laure; Victoir, Nicolas. Enhanced gaussian processes and applications. ESAIM: Probability and Statistics, Tome 13 (2009), pp. 247-260. doi: 10.1051/ps:2008007
[1] and , Variation sur une formule de Paul Lévy. Ann. Inst. H. Poincaré 23 (1987) 359-377. | Zbl | MR | Numdam
[2] , On polynomial chaos and integrability. Probab. Math. Statist. 3 (1984) 191-203. | Zbl | MR
[3] and Stochastic integral of divergence type with respect to fractional Brownian motion with Hurst parameter Ann. Inst. H. Poincaré Probab. Statist. 41 (2005) 1049-1081. | Zbl | MR | Numdam
[4] , An introduction to (stochastic) calculus with respect to fractional Brownian motion, Séminaire de Probabilités XL, Lect. Notes Math. 1899 (2007) 3-65. Springer, Berlin. | Zbl | MR
[5] and , Stochastic analysis, rough path analysis and fractional Brownian motions Probab. Theory Relat. Fields 122 (2002) 108-140. | Zbl | MR
[6] , and , Good rough path sequences and applications to anticipating calculus. Ann. Probab. 35 (2007) 1172-1193. | Zbl | MR
[7] , Stochastic Integration with respect to Volterra processes. Ann. Inst. H. Poincaré 41 (2005) 123-149. | Zbl | MR | Numdam
[8] and , Stochastic Analysis of the Fractional Brownian Motion. Potential Anal. 10 (1997) 177-214. | Zbl | MR
[9] , Régularité des trajectoires des fonctions aléatoires gaussiennes, École d'été de probabilités de Saint-Flour, 1974. Lect. Notes Math. 480 (1974) 1-96. | Zbl
[10] and , Approximations of the Brownian rough path with applications to stochastic analysis. Ann. Inst. H. Poincaré 41 (2005) 703-724. | Zbl | MR | Numdam
[11] , Introduction to Rough Paths, Séminaire de probabilités XXXVII. Lect. Notes Math. 1832 (2003) 1-59. | Zbl | MR
[12] , Wiener's random function and other Laplacian random function, Proc. 2 Berkeley Symp. Math. Proba. (1950) 171-186, Univ. of California. | Zbl | MR
[13] , Differential equations driven by rough signals. Rev. Mat. Iberoamericana 14 (1998) 215-310. | Zbl | MR
[14] and , System Control and Rough Paths, Oxford University Press (2002). | Zbl | MR
[15] and , Approximation of rough path of fractional Brownian motion, Seminar on Stochastic Analysis, Random Fields and Application V, Ascona 2005, Progr. Probab. 59. Birkhäuser Verlag (to appear) and arXiv math. PR/0509353. | Zbl | MR
[16] and , Are classes of deterministic integrands for fractional Brownian motion on interval complete? Bernoulli 7 (2001) 873-897. | Zbl | MR
Cité par Sources :






