We prove the existence and smoothness of density for the solution of a hyperbolic SPDE with free term coefficients depending on time, under hypoelliptic non degeneracy conditions. The result extends those proved in Cattiaux and Mesnager, PTRF 123 (2002) 453-483 to an infinite dimensional setting.
Keywords: Malliavin calculus, stochastic partial differential equations, two-parameter processes
@article{PS_2007__11__365_0,
author = {Sanz-Sol\'e, Marta and Torrecilla-Tarantino, Iv\'an},
title = {Probability density for a hyperbolic {SPDE} with time dependent coefficients},
journal = {ESAIM: Probability and Statistics},
pages = {365--380},
year = {2007},
publisher = {EDP Sciences},
volume = {11},
doi = {10.1051/ps:2007024},
mrnumber = {2339298},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ps:2007024/}
}
TY - JOUR AU - Sanz-Solé, Marta AU - Torrecilla-Tarantino, Iván TI - Probability density for a hyperbolic SPDE with time dependent coefficients JO - ESAIM: Probability and Statistics PY - 2007 SP - 365 EP - 380 VL - 11 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ps:2007024/ DO - 10.1051/ps:2007024 LA - en ID - PS_2007__11__365_0 ER -
%0 Journal Article %A Sanz-Solé, Marta %A Torrecilla-Tarantino, Iván %T Probability density for a hyperbolic SPDE with time dependent coefficients %J ESAIM: Probability and Statistics %D 2007 %P 365-380 %V 11 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ps:2007024/ %R 10.1051/ps:2007024 %G en %F PS_2007__11__365_0
Sanz-Solé, Marta; Torrecilla-Tarantino, Iván. Probability density for a hyperbolic SPDE with time dependent coefficients. ESAIM: Probability and Statistics, Tome 11 (2007), pp. 365-380. doi: 10.1051/ps:2007024
[1] and, Stochastic integrals in the plane. Acta Mathematica 134 (1975) 111-183. | Zbl
[2] and, Hypoelliptic non-homogeneous diffusions. PTRF 123 (2002) 453-483. | Zbl
[3] and, Applications of Malliavin calculus to stochastic differential equations with time-dependent coefficients. Acta Appli. Math. Sinica 7 (1991) 193-216. | Zbl
[4] and, Brownian Motion and Stochastic Calculus. Springer-Verlag (1988). | Zbl | MR
[5] , Stochastic calculus of variations and hypoelliptic operators, in Proc. Inter. Symp. on Stoch. Diff. Equations, Kyoto 1976, Tokyo and Wiley, New York (1978) 195-263. | Zbl
[6] , Simplified Malliavin calculus, in Séminaire de Probabilités XX. LNM 1204 (1986) 101-130. | Zbl | Numdam
[7] , The Malliavin Calculus and Related Topics. Probability and its Applications. Springer-Verlag, 2nd Edition (2006). | Zbl | MR
[8] and, Malliavin calculus for two-parameter Wiener functionals. Z. für Wahrscheinlichkeitstheorie verw. Gebiete 70 (1985) 573-590. | Zbl
[9] , Stochastic Integration and Differential Equations. Applications of Mathematics. Stochastic Modelling and Applied Probability. Springer, 2nd Edition 21 (2004). | Zbl | MR
[10] , Some applications of stochastic calculus to partial differential equations, in École d'Été de Probabilités de Saint Flour. LNM 976 (1983) 267-382. | Zbl
[11] , Applications of Malliavin's calculus to time-dependent systems of heat equations. Osaka J. Math. 22 (1985) 307-320. | Zbl
Cité par Sources :





