The aim of this short note is to study the behavior of the weighted empirical measures of the decreasing step Euler scheme of a one-dimensional diffusion process having multiple invariant measures. This situation can occur when the drift and the diffusion coefficient are vanish simultaneously.
Keywords: one-dimensional diffusion process, degenerate coefficient, invariant measure, Euler scheme
@article{PS_2007__11__236_0,
author = {Lemaire, Vincent},
title = {Behavior of the {Euler} scheme with decreasing step in a degenerate situation},
journal = {ESAIM: Probability and Statistics},
pages = {236--247},
year = {2007},
publisher = {EDP Sciences},
volume = {11},
doi = {10.1051/ps:2007018},
mrnumber = {2320818},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ps:2007018/}
}
TY - JOUR AU - Lemaire, Vincent TI - Behavior of the Euler scheme with decreasing step in a degenerate situation JO - ESAIM: Probability and Statistics PY - 2007 SP - 236 EP - 247 VL - 11 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ps:2007018/ DO - 10.1051/ps:2007018 LA - en ID - PS_2007__11__236_0 ER -
%0 Journal Article %A Lemaire, Vincent %T Behavior of the Euler scheme with decreasing step in a degenerate situation %J ESAIM: Probability and Statistics %D 2007 %P 236-247 %V 11 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ps:2007018/ %R 10.1051/ps:2007018 %G en %F PS_2007__11__236_0
Lemaire, Vincent. Behavior of the Euler scheme with decreasing step in a degenerate situation. ESAIM: Probability and Statistics, Tome 11 (2007), pp. 236-247. doi: 10.1051/ps:2007018
[1] , The parabolic differential equations and the associated semi-groups of transformations. Ann. of Math. (2) 55 (1952) 468-519. | Zbl
[2] , Diffusion processes in one dimension. Trans. Amer. Math. Soc. 77 (1954) 1-31. | Zbl
[3] and, Brownian motion and stochastic calculus. Springer-Verlag, New York, 2nd edition, Graduate Texts in Mathematics 113 (1991). | Zbl | MR
[4] and, A second course in stochastic processes. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York (1981). | Zbl | MR
[5] and, Recursive computation of the invariant distribution of a diffusion. Bernoulli 8 (2002) 367-405. | Zbl
[6] , Estimation récursive de la mesure invariante d'un processus de diffusion. Ph.D. Thesis, Université de Marne-la-Vallée (2005).
[7] , Sur quelques algorithmes récursifs pour les probabilités numériques. ESAIM Probab. Statist. 5 (2001) 141-170 (electronic). | Zbl | Numdam
[8] and, Diffusions, Markov processes, and martingales. Vol. 1. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons Ltd., Chichester, 2nd edition (1994). | Zbl | MR
[9] , Almost sure convergence. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, Probability and Mathematical Statistics 24 (1974). | Zbl | MR
Cité par Sources :





