Considering the centered empirical distribution function as a variable in , we derive non asymptotic upper bounds for the deviation of the -norms of as well as central limit theorems for the empirical process indexed by the elements of generalized Sobolev balls. These results are valid for a large class of dependent sequences, including non-mixing processes and some dynamical systems.
Keywords: deviation inequalities, weak dependence, Cramér-von Mises statistics, empirical process, expanding maps
@article{PS_2007__11__102_0,
author = {Dedecker, J\'er\^ome and Merlev\`ede, Florence},
title = {The empirical distribution function for dependent variables : asymptotic and nonasymptotic results in ${\mathbb {L}}^p$},
journal = {ESAIM: Probability and Statistics},
pages = {102--114},
year = {2007},
publisher = {EDP Sciences},
volume = {11},
doi = {10.1051/ps:2007009},
mrnumber = {2299650},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ps:2007009/}
}
TY - JOUR
AU - Dedecker, Jérôme
AU - Merlevède, Florence
TI - The empirical distribution function for dependent variables : asymptotic and nonasymptotic results in ${\mathbb {L}}^p$
JO - ESAIM: Probability and Statistics
PY - 2007
SP - 102
EP - 114
VL - 11
PB - EDP Sciences
UR - https://www.numdam.org/articles/10.1051/ps:2007009/
DO - 10.1051/ps:2007009
LA - en
ID - PS_2007__11__102_0
ER -
%0 Journal Article
%A Dedecker, Jérôme
%A Merlevède, Florence
%T The empirical distribution function for dependent variables : asymptotic and nonasymptotic results in ${\mathbb {L}}^p$
%J ESAIM: Probability and Statistics
%D 2007
%P 102-114
%V 11
%I EDP Sciences
%U https://www.numdam.org/articles/10.1051/ps:2007009/
%R 10.1051/ps:2007009
%G en
%F PS_2007__11__102_0
Dedecker, Jérôme; Merlevède, Florence. The empirical distribution function for dependent variables : asymptotic and nonasymptotic results in ${\mathbb {L}}^p$. ESAIM: Probability and Statistics, Tome 11 (2007), pp. 102-114. doi: 10.1051/ps:2007009
[1] , Weighted sums of certain dependent random variables. Tôkohu Math. J. 19 (1967) 357-367. | Zbl | MR
[2] , Random walks with stationary increments and renewal theory. Mathematical Centre Tracts 112, Mathematisch Centrum, Amsterdam (1979). | Zbl | MR
[3] and, An adaptive compression algorithm in Besov Spaces. Constr. Approx. 16 (2000) 1-36. | Zbl | MR
[4] , and, Exponential inequalities for dynamical measures of expanding maps of the interval. Probab. Theory Relat. Fields 123 (2002) 301-322. | Zbl | MR
[5] and, The conditional central limit theorem in Hilbert spaces. Stoch. Processes Appl. 108 (2003) 229-262. | Zbl | MR
[6] and, Coupling for -dependent sequences and applications. J. Theoret. Probab. 17 (2004) 861-885. | Zbl | MR
[7] and, New dependence coefficients. Examples and applications to statistics. Probab. Theory Relat. Fields 132 (2005) 203-236. | Zbl | MR
[8] and, On the functional central limit theorem for stationary processes. Ann. Inst. H. Poincaré Probab. Statist. 36 (2000) 1-34. | Numdam | Zbl | MR | EuDML
[9] , and, Invariance principle for absolutely regular empirical processes. Ann. Inst. H. Poincaré Probab. Statist. 31 (1995) 393-427. | Numdam | Zbl | MR | EuDML
[10] , The central limit theorem for stationary processes. Dokl. Akad. Nauk SSSR 188 (1969) 739-741. | Zbl
[11] , The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality. Ann. Probab. 18 (1990) 1269-1283. | Zbl
[12] and, On the coupling of dependent random variables and applications, in Empirical process techniques for dependent data, Birkhäuser (2002) 171-193. | Zbl
[13] and, weak convergence of the empirical process for dependent variables, in Wavelets and statistics (Villard de Lans 1994), Lect. Notes Statist. 103 (1995) 331-344. | Zbl
[14] and, Weak convergence in of the uniform empirical process under dependence. Statist. Probab. Lett. 39 (1998) 363-370. | Zbl
[15] , An approach to inequalities for the distributions of infinite-dimensional martingales, in Probability in Banach spaces, Proc. Eight Internat. Conf. 8 (1992) 128-134. | Zbl
[16] , Inégalités de Hoeffding pour les fonctions lipschitziennes de suites dépendantes. C. R. Acad. Sci. Paris Série I 330 (2000) 905-908. | Zbl
[17] , Bracketing smooth functions. Stoch. Processes Appl. 52 (1994) 93-105. | Zbl
[18] , A central limit theorem for martingales in Banach spaces. Bull. Acad. Polon. Sci. Sr. Sci. Math. Astronom. Phys. 23 (1975) 917-920. | Zbl
[19] , Exponential bounds for large deviations. Theory Prob. Appl. 19 (1974) 154-155. | Zbl
Cité par Sources :






