Unbiased risk estimation, à la Stein, is studied for infinitely divisible laws with finite second moment.
Keywords: wavelets, thresholding, minimax
@article{PS_2006__10__269_0,
author = {Averkamp, R. and Houdr\'e, C.},
title = {Stein estimation for infinitely divisible laws},
journal = {ESAIM: Probability and Statistics},
pages = {269--276},
year = {2006},
publisher = {EDP Sciences},
volume = {10},
doi = {10.1051/ps:2006011},
mrnumber = {2247922},
zbl = {1187.62070},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ps:2006011/}
}
TY - JOUR AU - Averkamp, R. AU - Houdré, C. TI - Stein estimation for infinitely divisible laws JO - ESAIM: Probability and Statistics PY - 2006 SP - 269 EP - 276 VL - 10 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ps:2006011/ DO - 10.1051/ps:2006011 LA - en ID - PS_2006__10__269_0 ER -
Averkamp, R.; Houdré, C. Stein estimation for infinitely divisible laws. ESAIM: Probability and Statistics, Tome 10 (2006), pp. 269-276. doi: 10.1051/ps:2006011
[1] and, Wavelet Thresholding for non necessarily Gaussian Noise: Idealism. Ann. Statist. 31 (2003) 110-151. | Zbl
[2] and, Wavelet Thresholding for non necessarily Gaussian Noise: Functionality. Ann. Statist. 33 (2005) 2164-2193. | Zbl
[3] and, Adapting to Unknown Smoothness via Wavelet Shrinkage. J. Amer. Statist. Assoc. 90 (1995) 1200-1224. | Zbl
[4] ,, and, Wavelet Shrinkage: Asymptotia? J. Roy. Statist. Soc. Ser. B 57 (1995) 301-369. | Zbl
[5] , An Introduction to Probability Theory and its Applications, Vol. II. John Wiley & Sons (1966). | Zbl | MR
[6] , Estimation of the mean of a multivariate normal distribution. Ann. Statist. 9 (1981) 1135-1151. | Zbl
Cité par Sources :






