We present a spectral theory for a class of operators satisfying a weak “Doeblin-Fortet” condition and apply it to a class of transition operators. This gives the convergence of the series , , under some regularity assumptions and implies the central limit theorem with a rate in for the corresponding Markov chain. An application to a non uniformly hyperbolic transformation on the interval is also given.
Keywords: transfer operator, convergence of iterates, Markov chains, rate in the TCL for dynamical systems, Borel-Cantelli property, non uniformly hyperbolic map
@article{PS_2003__7__115_0,
author = {Conze, Jean-Pierre and Raugi, Albert},
title = {Convergence of iterates of a transfer operator, application to dynamical systems and to {Markov} chains},
journal = {ESAIM: Probability and Statistics},
pages = {115--146},
year = {2003},
publisher = {EDP Sciences},
volume = {7},
doi = {10.1051/ps:2003003},
mrnumber = {1956075},
zbl = {1018.60072},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ps:2003003/}
}
TY - JOUR AU - Conze, Jean-Pierre AU - Raugi, Albert TI - Convergence of iterates of a transfer operator, application to dynamical systems and to Markov chains JO - ESAIM: Probability and Statistics PY - 2003 SP - 115 EP - 146 VL - 7 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ps:2003003/ DO - 10.1051/ps:2003003 LA - en ID - PS_2003__7__115_0 ER -
%0 Journal Article %A Conze, Jean-Pierre %A Raugi, Albert %T Convergence of iterates of a transfer operator, application to dynamical systems and to Markov chains %J ESAIM: Probability and Statistics %D 2003 %P 115-146 %V 7 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ps:2003003/ %R 10.1051/ps:2003003 %G en %F PS_2003__7__115_0
Conze, Jean-Pierre; Raugi, Albert. Convergence of iterates of a transfer operator, application to dynamical systems and to Markov chains. ESAIM: Probability and Statistics, Tome 7 (2003), pp. 115-146. doi: 10.1051/ps:2003003
[1] , Positive Transfer Operators and Decay of Correlations. World Scientific, Adv. Ser. Nonlinear Dynam. 16 (2000). | Zbl | MR
[2] , Equilibrium states and the ergodic theory of Anosov Diffeomorphisms. Springer-Verlag, Lectures Notes 470 (1975). | Zbl | MR
[3] , Martingale central limit theorem. Ann. Math. Statist. 42 (1971) 59-66. | Zbl | MR
[4] and, Dynamical Borel-Cantelli lemmas for Gibbs measures. Isreal J. Math. 122 (2001) 1-27. | Zbl | MR
[5] and, Fonctions harmoniques pour un opérateur de transition et applications. Bull. Soc. Math. France 118 (1990) 273-310. | Zbl | MR | Numdam | EuDML
[6] and, Convergence des potentiels pour un opérateur de transfert, applications aux systèmes dynamiques et aux chaînes de Markov. Séminaires de Rennes (1998) 52. | Zbl | MR | EuDML
[7] , On the central limit theorem for stationary processes. Dokl. Akad. Nauk SSSR, Soviet Math. Dokl. 10 (1969) 1174-1176. | Zbl | MR
[8] and, Central limit theorem for stationary Markov processes. Dokl. Akad. Nauk SSSR 239 (1978) 766-767. | Zbl | MR
[9] , Sharp polynomial estimates for the decay of correlations. Preprint (2002). | Zbl | MR
[10] and, Martingale limit theory and its applications. Academic Press, New York (1980). | Zbl | MR
[11] and, Limit theorem for Markov Chains and Stochastic Properties of Dynamical Systems by Quasi-compactness. Springer-Verlag, Lectures Notes 1766 (2001). | Zbl | MR
[12] , Decay of correlations for piecwise smooth maps with indifferent fixed points. Preprint. | Zbl
[13] , Vitesse de convergence dans le TCL pour certaines chaînes de Markov et certains systèmes dynamiques, Preprint. Université de Rennes 1 (2000). | MR
[14] and, Logarithm laws for flows on homogeneous spaces. Invent. Math. 138 (1999) 451-494. | Zbl | MR
[15] , and, Vitesse de convergence vers l'état d'équilibre pour des dynamiques markoviennes non höldériennes. Ann. Inst. H. Poincaré 33 (1997) 675-695. | Zbl | Numdam
[16] , Decay of correlations. Ann. Math. 142 (1995) 239-301. | Zbl | MR
[17] , and, A probabilistic approach to intermittency. Ergodic Theory Dynam. Systems 19 (1999) 671-685. | Zbl | MR
[18] , Some metrical theorems in number theory. Pacific J. Math. 20 (1967) 109-127. | Zbl | MR
[19] , Rates of mixing for potentials of summable variation. Trans. Amer. Math. Soc. 352 (2000) 843-853. | Zbl | MR
[20] and, Statistical properties of maps with indifferent periodic points. Comm. Math. Phys. 217 (2001) 503-520. | Zbl | MR
[21] , Théorie spectrale d'un opérateur de transition sur un espace métrique compact. Ann. Inst. H. Poincaré 28 (1992) 281-309. | Zbl | Numdam
[22] , Sur le théorème de Berry-Esseen pour les suites faiblement dépendantes. J. Probab. Theory Related Fields 104 (1996) 255-282. | Zbl
[23] , Subexponential decay of decorrelation. Preprint (2001). | Zbl
[24] , Gibbs measures in ergodic theory. Russian Math. Surveys 166 (1972) 21-64. | Zbl | MR
[25] , Invariant measures and equilibrium states for some mappings which expand distances. Trans. Amer. Math. Soc. 236 (1978) 121-153. | Zbl | MR
[26] , Recurrence times and rates of mixing. Israel J. Math. 110 (1999) 153-188. | Zbl | MR
Cité par Sources :






