We establish some error estimates for the approximation of an optimal stopping problem along the paths of the Black-Scholes model. This approximation is based on a tree method. Moreover, we give a global approximation result for the related obstacle problem.
Keywords: dynamic programming, snell envelope, optimal stopping
@article{PS_2002__6__1_0,
author = {Bally, Vlad and Saussereau, Bruno},
title = {Approximation of the {Snell} envelope and american options prices in dimension one},
journal = {ESAIM: Probability and Statistics},
pages = {1--19},
year = {2002},
publisher = {EDP Sciences},
volume = {6},
doi = {10.1051/ps:2002001},
mrnumber = {1888135},
zbl = {0998.60037},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ps:2002001/}
}
TY - JOUR AU - Bally, Vlad AU - Saussereau, Bruno TI - Approximation of the Snell envelope and american options prices in dimension one JO - ESAIM: Probability and Statistics PY - 2002 SP - 1 EP - 19 VL - 6 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ps:2002001/ DO - 10.1051/ps:2002001 LA - en ID - PS_2002__6__1_0 ER -
%0 Journal Article %A Bally, Vlad %A Saussereau, Bruno %T Approximation of the Snell envelope and american options prices in dimension one %J ESAIM: Probability and Statistics %D 2002 %P 1-19 %V 6 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ps:2002001/ %R 10.1051/ps:2002001 %G en %F PS_2002__6__1_0
Bally, Vlad; Saussereau, Bruno. Approximation of the Snell envelope and american options prices in dimension one. ESAIM: Probability and Statistics, Tome 6 (2002), pp. 1-19. doi: 10.1051/ps:2002001
[1] and, Error estimates and free-boundary convergence for a finite-difference discretization of a parabolic variational inequality. RAIRO Anal. Numér./Numer. Anal. 11 (1977) 315-340. | Zbl | MR | Numdam
[2] , and, Reflected BSDE's, PDE's and Variational Inequalities. J. Theoret. Probab. (submitted).
[3] and, Applications of the Variational Inequalities in Stochastic Control. North Holland (1982). | Zbl | MR
[4] and, Handbook of Brownian Motion Facts and Formulae. Birkhauser (1996). | Zbl | MR
[5] and, American option valuation: New bounds, approximations, and a comparison of existing methods. Rev. Financial Stud. 9 (1995) 1211-1250.
[6] ,,, and, Reflected Solutions of Backward Stochastic Differential Equations and related Obstacle Problems for PDE's. Ann. Probab. 25 (1997) 702-737. | Zbl
[7] , An Introduction to Probability Theory and its Applications, Vol. II. John Wiley and Sons (1966). | Zbl | MR
[8] , Error Estimates for the Binomial Approximation of American Put Options. Ann. Appl. Probab. 8 (1998) 206-233. | Zbl | MR
[9] , Brownian optimal stopping and random walks, Preprint 03/98. Université de Marne-la-Vallée (1998). | Zbl | MR
[10] and, Sur l'approximation des réduites. Ann. Inst. H. Poincaré Probab. Statist. 26 (1990) 331-335. | Zbl | Numdam
[11] and, Optimal Stopping and Embedding, Preprint 17/99. Université de Marne-la-Vallée (1999). | Zbl
[12] and, Continuous Martingales and Brownian Motion. Springer Verlag, Berlin Heidelberg (1991). | Zbl | MR
[13] and, Convex Functions. Academic Press, New York (1973). | Zbl | MR
[14] , Sur une classe d'équations aux dérivées partielles. Ph.D. Thesis of the University of Le Mans, France (2000).
Cité par Sources :






