Unit boundary length quantum disk: a study of two different perspectives and their equivalence
ESAIM: Probability and Statistics, Tome 25 (2021), pp. 433-459

The theory of the two-dimensional Liouville Quantum Gravity, first introduced by Polyakov in his 1981 work has become a key notion in the study of random surfaces. In a series of articles, David, Huang, Kupiainen, Rhodes and Vargas, on the one hand, and Duplantier, Miller and Sheffield on the other hand, investigated this topic in the realm of probability theory, and both provided definitions for fundamentals objects of the theory: the unit area quantum sphere and the unit boundary length quantum disk. In a recent article, Aru, Huang and Sun showed that the definitions given in the case of the sphere coincide. We study here the two different perspectives provided for the unit boundary length quantum disk and show that they define the same probabilistic objects by considering two similar limiting procedures giving rise to them.

DOI : 10.1051/ps/2021016
Classification : 60D05, 81T20, 81T40
Keywords: Liouville Quantum Gravity, Gaussian Free Field, Gaussian Multiplicative Chaos
@article{PS_2021__25_1_433_0,
     author = {Cercl\'e, Baptiste},
     title = {Unit boundary length quantum disk: a study of two different perspectives and their equivalence},
     journal = {ESAIM: Probability and Statistics},
     pages = {433--459},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {25},
     doi = {10.1051/ps/2021016},
     mrnumber = {4338790},
     zbl = {1482.60012},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ps/2021016/}
}
TY  - JOUR
AU  - Cerclé, Baptiste
TI  - Unit boundary length quantum disk: a study of two different perspectives and their equivalence
JO  - ESAIM: Probability and Statistics
PY  - 2021
SP  - 433
EP  - 459
VL  - 25
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ps/2021016/
DO  - 10.1051/ps/2021016
LA  - en
ID  - PS_2021__25_1_433_0
ER  - 
%0 Journal Article
%A Cerclé, Baptiste
%T Unit boundary length quantum disk: a study of two different perspectives and their equivalence
%J ESAIM: Probability and Statistics
%D 2021
%P 433-459
%V 25
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ps/2021016/
%R 10.1051/ps/2021016
%G en
%F PS_2021__25_1_433_0
Cerclé, Baptiste. Unit boundary length quantum disk: a study of two different perspectives and their equivalence. ESAIM: Probability and Statistics, Tome 25 (2021), pp. 433-459. doi: 10.1051/ps/2021016

[1] M. Ang and E. Gwynne, Liouville quantum gravity surfaces with boundary as matings of trees. Ann. Inst. Henri Poincaré Prob. Stat. 57 (2021) 1–53. | MR | Zbl

[2] J. Aru, Y. Huang and X. Sun, Two perspectives of the 2D unit area quantum sphere and their equivalence. Commun. Math. Phys. 356 (2017) 261–283. | MR | Zbl | DOI

[3] N. Berestycki, S. Sheffield and X. Sun, Equivalence of Liouville measure and Gaussian free field. Preprint (2014). | arXiv | MR | Zbl

[4] J. Bettinelli and G. Miermont, Compact Brownian surfaces I: Brownian disks. Prob. Theory Related Fields 167 (2017) 555. | MR | Zbl | DOI

[5] F. David, A. Kupiainen, R. Rhodes and V. Vargas, Liouville quantum gravity on the Riemann sphere. Commun. Math. Phys. 342 (2016) 869. | MR | Zbl | DOI

[6] J. Ding, J. Dubédat, A. Dunlap and H. Falconet, Tightness of Liouville first passage percolation for $\gamma \in (0, 2)$. Publ. Math. l’IHÉS 132 (2020) 353–403. | MR | Zbl | DOI

[7] F. David, R. Rhodes and V. Vargas, Liouville quantum gravity on complex tori. J. Math. Phys. 57 (2016) 022302. | MR | Zbl | DOI

[8] B. Duplantier and S. Sheffield, Liouville Quantum Gravity and KPZ. Invent. Math. 185 (2011) 333. | MR | Zbl | DOI

[9] A. Göing-Jaeschke and M. Yor, A survey and some generalizations of Bessel processes. Bernoulli 9 (2003) 313–349. | MR | Zbl | DOI

[10] B. Duplantier, J. Miller and S. Sheffield, Liouville quantum gravity as a mating of trees. Preprint (2014). | arXiv | Zbl

[11] C. Guillarmou, R. Rhodes and V. Vargas, Polyakov’s formulation of 2d bosonic string theory. Publ. Math. l’IHÉS 130 (2016) 111–185. | MR | Zbl | DOI

[12] E. Gwynne and J. Miller, Existence and uniqueness of the Liouville quantum gravity metric for γ ( 0 , 2 ) . Invent. Math. 223 (2021) 213–333. | MR | Zbl | DOI

[13] Y. Huang, R. Rhodes and V. Vargas, Liouville quantum gravity on the unit disk. Ann. Inst. Henri Poincaré Probab. Statist. 54 (2018) 1694–1730. | MR | Zbl | DOI

[14] S. Janson, Gaussian Hilbert spaces. Cambridge Tracts in Mathematics. Cambridge University Press (1997). | MR | Zbl

[15] J.-P. Kahane, Sur le chaos multiplicatif. Ann. Sci. Math. Québec 9 (1985) 105–150. | MR | Zbl

[16] A. Kupiainen, R. Rhodes and V. Vargas, The DOZZ formula from the path integral. J. High Energy Phys. 94 (2018) 2018. | MR | Zbl

[17] A. Kupiainen, R. Rhodes and V. Vargas, Local conformal structure of liouville quantum gravity. Commun. Math. Phys. 371 (2018) 1005–1069. | MR | Zbl | DOI

[18] J.-F. Le Gall Uniqueness and universality of the Brownian map. Ann. Probab. 41 (2013) 2880–2960. | MR | Zbl

[19] G. Miermont, The Brownian map is the scaling limit of uniform random plane quadrangulations. Acta Math. 210 (2013) 319–401. | MR | Zbl | DOI

[20] J. Miller and S. Sheffield, Liouville quantum gravity and the Brownian map II: geodesics and continuity of the embedding. Preprint (2016). | arXiv | MR | Zbl

[21] J. Miller and S. Sheffield, Liouville quantum gravity and the Brownian map III: the conformal structure is determined. Preprint (2016). | arXiv | MR | Zbl

[22] J. Miller and S. Sheffield, Imaginary geometry IV: interior rays, whole-plane reversibility, and space-filling trees. Prob. Theory Related Fields 169 (2017) 729. | MR | Zbl | DOI

[23] J. Miller and S. Sheffield, Liouville quantum gravity and the Brownian map I: the QLE ( 8 / 3 , 0 ) metric. Invent. Math. 219 (2019) 75–152. | MR | Zbl | DOI

[24] A. Polyakov, Quantum Geometry of bosonic strings. Phys. Lett. B 103 (1981) 207:210. | MR | DOI

[25] D. Revuz and M. Yor, Continuous Martingales and Brownian Motion. Springer, Berlin (1991). | MR | Zbl | DOI

[26] R. Rhodes and V. Vargas, Gaussian multiplicative chaos and applications: a review. Probab. Surv. 11 (2014) 315–392. | MR | Zbl | DOI

[27] R. Rhodes and V. Vargas, Lecture notes on Gaussian multiplicative chaos and Liouville Quantum Gravity. Preprint (2016). | arXiv | MR | Zbl

[28] N. Seiberg, Notes on quantum Liouville theory and quantum gravity. Random Surf. Quant. Grav. 262 (1990) 363. | MR | Zbl | DOI

[29] S. Sheffield, Gaussian free field for mathematicians. Prob. Theory Related Fields 139 (2007) 521. | MR | Zbl | DOI

[30] S. Sheffield, Conformal weldings of random surfaces: SLE and the quantum gravity zipper. Ann. Probab. 44 (2016) 3474–3545. | MR | Zbl | DOI

Cité par Sources :