Extinction rate of continuous state branching processes in critical Lévy environments
ESAIM: Probability and Statistics, Tome 25 (2021), pp. 346-375

We study the speed of extinction of continuous state branching processes in a Lévy environment, where the associated Lévy process oscillates. Assuming that the Lévy process satisfies Spitzer’s condition, we extend recent results where the associated branching mechanism is stable. The study relies on the path analysis of the branching process together with its Lévy environment, when the latter is conditioned to have a non-negative running infimum. For that purpose, we combine the approach developed in Afanasyev et al. [2], for the discrete setting and i.i.d. environments, with fluctuation theory of Lévy processes and a result on exponential functionals of Lévy processes due to Patie and Savov [28].

DOI : 10.1051/ps/2021014
Classification : 60J80, 60G51, 60H10, 60K37
Keywords: Continuous state branching processes, Lévy processes conditioned to stay positive, random environment, Spitzer’s condition, extinction, long time behaviour
@article{PS_2021__25_1_346_0,
     author = {Bansaye, Vincent and Pardo, Juan Carlos and Smadi, Charline},
     title = {Extinction rate of continuous state branching processes in critical {L\'evy} environments},
     journal = {ESAIM: Probability and Statistics},
     pages = {346--375},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {25},
     doi = {10.1051/ps/2021014},
     mrnumber = {4291369},
     zbl = {1482.60112},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ps/2021014/}
}
TY  - JOUR
AU  - Bansaye, Vincent
AU  - Pardo, Juan Carlos
AU  - Smadi, Charline
TI  - Extinction rate of continuous state branching processes in critical Lévy environments
JO  - ESAIM: Probability and Statistics
PY  - 2021
SP  - 346
EP  - 375
VL  - 25
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ps/2021014/
DO  - 10.1051/ps/2021014
LA  - en
ID  - PS_2021__25_1_346_0
ER  - 
%0 Journal Article
%A Bansaye, Vincent
%A Pardo, Juan Carlos
%A Smadi, Charline
%T Extinction rate of continuous state branching processes in critical Lévy environments
%J ESAIM: Probability and Statistics
%D 2021
%P 346-375
%V 25
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ps/2021014/
%R 10.1051/ps/2021014
%G en
%F PS_2021__25_1_346_0
Bansaye, Vincent; Pardo, Juan Carlos; Smadi, Charline. Extinction rate of continuous state branching processes in critical Lévy environments. ESAIM: Probability and Statistics, Tome 25 (2021), pp. 346-375. doi: 10.1051/ps/2021014

[1] V.I. Afanasyev, C. Böinghoff, G. Kersting and V.A. Vatutin, Limit theorems for weakly subcritical branching processes in random environment. J. Theor. Probab. 25 (2012) 703–732. | MR | Zbl | DOI

[2] V.I. Afanasyev, J. Geiger, G. Kersting and V.A. Vatutin, Criticality for branching processes in random environment. Ann. Probab. 33 (2005) 645–673. | MR | Zbl | DOI

[3] V. Bansaye and J. Berestycki, Large deviations for branching processes in random environment. Markov Proc. Rel. Fields 15 (2009) 493–524. | MR | Zbl

[4] V. Bansaye, M.-E. Caballero and S. Méléard, Scaling limits of population and evolution processes in random environment. Electr. J. Probab. 24 (2019). | MR | Zbl

[5] V. Bansaye, J.C. Pardo and C. Smadi, On the extinction of continuous state branching processes with catastrophes. Electr. J. Probab. 18 (2013) 1–36. | MR | Zbl

[6] V. Bansaye and F. Simatos, On the scaling limits of Galton-Watson processes in varying environments. Electron. J. Probab. 20 (2015) 1–36. | MR | Zbl | DOI

[7] J. Bertoin, Lévy processes. Vol. 121 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (1996). | MR | Zbl

[8] J. Bertoin and R. Doney, Spitzer’s condition for random walks and Lévy processes. Annales de l’IHP Probabilités et Statistiques 33 (1997) 167–178. | MR | Zbl | Numdam

[9] N.H. Bingham, Continuous branching processes and spectral positivity. Stochastic Process. Appl. 4 (1976) 217–242. | MR | Zbl | DOI

[10] N.H. Bingham, C.M. Goldie and J.L. Teugels, Vol. 27 of Regular variation. Cambridge University Press (1989). | MR | Zbl

[11] C. Boeinghoff and M. Hutzenthaler, Branching diffusions in random environment. Markov Proc. Rel. Fields 18 (2012) 269–310. | MR | Zbl

[12] C. Böinghoff, E. Dyakonova, G. Kersting and V. Vatutin, Branching processes in random environment which extinct at a given moment. Markov Proc. Rel. Fields 16 (2010) 329–350. | MR | Zbl

[13] L. Chaumont, Conditionings and path decompositions for Lévy processes. Stochastic Process. Appl. 64 (1996) 39–54. | MR | Zbl | DOI

[14] L. Chaumont and R.A. Doney, On Lévy processes conditioned to stay positive. Electron. J. Probab 10 (2005) 948–961. | MR | Zbl | DOI

[15] D.A. Dawson and Z. Li, Stochastic equations, flows and measure-valued processes. Ann. Probab. 40 (2012) 813–857. | MR | Zbl | DOI

[16] R.A. Doney, Fluctuation Theory for Lévy Processes: Ecole D’Eté de Probabilités de Saint-Flour XXXV-2005. Springer (2007). | MR | Zbl

[17] D.R. Grey, Asymptotic behaviour of continuous time, continuous state-space branching processes. J. Appl. Probab. 11 (1974) 669–677. | MR | Zbl | DOI

[18] A. Grimvall, On the convergence of sequences of branching processes. Ann. Probab. 2 (1974) 1027–1045. | MR | Zbl | DOI

[19] H. He, Z. Li and W. Xu, Continuous-state branching processes in Lévy random environments. J. Theor. Probab. (2018) 1–23. | MR | Zbl

[20] M. Jirina, Stochastic branching processes with continuous state space. Czechoslovak Math. J. 8 (1958) 292–313. | MR | Zbl | DOI

[21] T.G. Kurtz, Diffusion approximations for branching processes, in Vol. 5 of Branching processes (Conf., Saint Hippolyte, Que., 1976) (1978) 269–292. | MR | Zbl

[22] J. Lamperti, Continuous state branching processes. Bull. Amer. Math. Soc. 73 (1967) 382–386. | MR | Zbl | DOI

[23] J. Lamperti, The limit of a sequence of branching processes. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 7 (1967) 271–288. | MR | Zbl | DOI

[24] Z. Li and W. Xu, Asymptotic results for exponential functionals of Lévy processes. Stochastic Process. Appl. (2017). | MR | Zbl

[25] S. Palau and J.C. Pardo, Continuous state branching processes in random environment: the Brownian case. Stochastic Processes Appl. 127 (2017) 957–994. | MR | Zbl | DOI

[26] S. Palau and J.C. Pardo, Branching processes in a Lévy random environment. Acta Appl. Math. 153 (2018) 55–79. | MR | Zbl | DOI

[27] S. Palau, J.C. Pardo and C. Smadi, Asymptotic behaviour of exponential functionals of Lévy processes with applications to random processes in random environment. ALEA Lat. Am. J. Probab. Math. Stat. 13 (2016) 1235–1258. | MR | Zbl | DOI

[28] P. Patie and M. Savov, Bernstein-gamma functions and exponential functionals of Lévy processes. Electron. J. Probab. 23 (2018). | MR | Zbl | DOI

[29] W.L. Smith and W.E. Wilkinson, On branching processes in random environments. Ann. Math. Statist. 40 (1969) 814–827. | MR | Zbl | DOI

Cité par Sources :