In this work we characterize the local asymptotic self-similarity of harmonizable fractional Lévy motions in the heavy tailed case. The corresponding tangent process is shown to be the harmonizable fractional stable motion. In addition, we provide sufficient conditions for existence of harmonizable fractional Lévy motions.
Keywords: Local asymptotic self-similarity, harmonizable processes, fractional processes, spectral representations
@article{PS_2021__25_1_286_0,
author = {Basse-O{\textquoteright}Connor, Andreas and Gr{\o}nb{\ae}k, Thorbj{\o}rn and Podolskij, Mark},
title = {Local asymptotic self-similarity for heavy tailed harmonizable fractional {L\'evy} motions},
journal = {ESAIM: Probability and Statistics},
pages = {286--297},
year = {2021},
publisher = {EDP-Sciences},
volume = {25},
doi = {10.1051/ps/2021011},
mrnumber = {4281739},
zbl = {1478.60122},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ps/2021011/}
}
TY - JOUR AU - Basse-O’Connor, Andreas AU - Grønbæk, Thorbjørn AU - Podolskij, Mark TI - Local asymptotic self-similarity for heavy tailed harmonizable fractional Lévy motions JO - ESAIM: Probability and Statistics PY - 2021 SP - 286 EP - 297 VL - 25 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/ps/2021011/ DO - 10.1051/ps/2021011 LA - en ID - PS_2021__25_1_286_0 ER -
%0 Journal Article %A Basse-O’Connor, Andreas %A Grønbæk, Thorbjørn %A Podolskij, Mark %T Local asymptotic self-similarity for heavy tailed harmonizable fractional Lévy motions %J ESAIM: Probability and Statistics %D 2021 %P 286-297 %V 25 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/ps/2021011/ %R 10.1051/ps/2021011 %G en %F PS_2021__25_1_286_0
Basse-O’Connor, Andreas; Grønbæk, Thorbjørn; Podolskij, Mark. Local asymptotic self-similarity for heavy tailed harmonizable fractional Lévy motions. ESAIM: Probability and Statistics, Tome 25 (2021), pp. 286-297. doi: 10.1051/ps/2021011
[1] and , Nonparametric estimation of the local Hurst function of multifractional Gaussian processes. Stochastic Process. Appl. 123 (2013) 1004–1045. | MR | Zbl | DOI
[2] , and , Power variation for a class of stationary increments Lévy driven moving averages. Ann. Probab. 45 (2017) 4477–4528. | MR | Zbl | DOI
[3] , and , Identification and properties of real harmonizable fractional Lévy motions. Bernoulli 8 (2002) 97–115. | MR | Zbl
[4] , and , On roughness indices for fractional fields. Bernoulli 10 (2004) 357–373. | MR | Zbl | DOI
[5] , and , Elliptic Gaussian random processes. Rev. Mat. Iberoamericana 13 (1997) 19–90. | MR | Zbl | DOI
[6] and , Two classes of self-similar stable processes with stationary increments. Stochastic Process. Appl. 32 (1989) 305–329. | MR | Zbl | DOI
[7] , Vol. 7 of Stochastic Processes. Wiley, New York (1953). | MR | Zbl
[8] and , Multivariate stochastic integrals with respect to independently scattered random measures on -rings. Preprint [math.PR] (2018) 28. | arXiv | MR | Zbl
[9] , Semi-stable stochastic processes. Trans. Am. Math. Soc. 104 (1962) 62–78. | MR | Zbl | DOI
[10] , Fractional Lévy processes with an application to long memory moving average processes. Bernoulli 12 (2006) 1099–1126. | MR | Zbl | DOI
[11] and , Multifractional Brownian Motion: Definition and Preliminary Results. Research Report RR-2645, INRIA (1995). Available at https://hal.inria.fr/inria-00074045/file/RR-2645.pdf.
[12] and , Spectral representations of infinitely divisible processes. Probab. Theory Related Fields 82 (1989) 451–487. | MR | Zbl | DOI
[13] , On the structure of stationary stable processes. Ann. Probab. 23 (1995) 1163–1187. | MR | Zbl | DOI
[14] and , Classes of mixing stable processes. Bernoulli 2 (1996) 365–377. | MR | Zbl | DOI
[15] and , Stable non-Gaussian Random Processes. Stochastic Modeling. Chapman & Hall, New York (1994). Stochastic models with infinite variance. | MR | Zbl
[16] , Lévy processes and infinitely divisible distributions. Vol. 68 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1999). Translated from the 1990 Japanese original, Revised by the author. | MR | Zbl
[17] , , , and , Lass: a tool for the local analysis of self-similarity. Comput. Stat. Data Anal. 50 (2006) 2447–2471. | MR | Zbl | DOI
[18] , Random measures and harmonizable sequences. Stud. Math. 31 (1968) 61–88. | MR | Zbl | DOI
[19] , and , A bibliographical guide to self-similar traffic and performance modeling for modern high-speed networks. Stochastics Networks: Theory and Applications. Oxford University Press (1996) 339–366. | Zbl
[20] , An Introduction to the Theory of Stationary Random Functions. Courier Corporation (2004). | Zbl | MR
Cité par Sources :





