Local asymptotic self-similarity for heavy tailed harmonizable fractional Lévy motions
ESAIM: Probability and Statistics, Tome 25 (2021), pp. 286-297

In this work we characterize the local asymptotic self-similarity of harmonizable fractional Lévy motions in the heavy tailed case. The corresponding tangent process is shown to be the harmonizable fractional stable motion. In addition, we provide sufficient conditions for existence of harmonizable fractional Lévy motions.

DOI : 10.1051/ps/2021011
Classification : 60G22, 60F05, 60E07
Keywords: Local asymptotic self-similarity, harmonizable processes, fractional processes, spectral representations
@article{PS_2021__25_1_286_0,
     author = {Basse-O{\textquoteright}Connor, Andreas and Gr{\o}nb{\ae}k, Thorbj{\o}rn and Podolskij, Mark},
     title = {Local asymptotic self-similarity for heavy tailed harmonizable fractional {L\'evy} motions},
     journal = {ESAIM: Probability and Statistics},
     pages = {286--297},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {25},
     doi = {10.1051/ps/2021011},
     mrnumber = {4281739},
     zbl = {1478.60122},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ps/2021011/}
}
TY  - JOUR
AU  - Basse-O’Connor, Andreas
AU  - Grønbæk, Thorbjørn
AU  - Podolskij, Mark
TI  - Local asymptotic self-similarity for heavy tailed harmonizable fractional Lévy motions
JO  - ESAIM: Probability and Statistics
PY  - 2021
SP  - 286
EP  - 297
VL  - 25
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ps/2021011/
DO  - 10.1051/ps/2021011
LA  - en
ID  - PS_2021__25_1_286_0
ER  - 
%0 Journal Article
%A Basse-O’Connor, Andreas
%A Grønbæk, Thorbjørn
%A Podolskij, Mark
%T Local asymptotic self-similarity for heavy tailed harmonizable fractional Lévy motions
%J ESAIM: Probability and Statistics
%D 2021
%P 286-297
%V 25
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ps/2021011/
%R 10.1051/ps/2021011
%G en
%F PS_2021__25_1_286_0
Basse-O’Connor, Andreas; Grønbæk, Thorbjørn; Podolskij, Mark. Local asymptotic self-similarity for heavy tailed harmonizable fractional Lévy motions. ESAIM: Probability and Statistics, Tome 25 (2021), pp. 286-297. doi: 10.1051/ps/2021011

[1] J.-M. Bardet and D. Surgailis, Nonparametric estimation of the local Hurst function of multifractional Gaussian processes. Stochastic Process. Appl. 123 (2013) 1004–1045. | MR | Zbl | DOI

[2] A. Basse-O’Connor, R. Lachièze-Rey and M. Podolskij, Power variation for a class of stationary increments Lévy driven moving averages. Ann. Probab. 45 (2017) 4477–4528. | MR | Zbl | DOI

[3] A. Benassi, S. Cohen and J. Istas, Identification and properties of real harmonizable fractional Lévy motions. Bernoulli 8 (2002) 97–115. | MR | Zbl

[4] A. Benassi, S. Cohen and J. Istas, On roughness indices for fractional fields. Bernoulli 10 (2004) 357–373. | MR | Zbl | DOI

[5] A. Benassi, S. Jaffard and D. Roux, Elliptic Gaussian random processes. Rev. Mat. Iberoamericana 13 (1997) 19–90. | MR | Zbl | DOI

[6] S. Cambanis and M. Maejima, Two classes of self-similar stable processes with stationary increments. Stochastic Process. Appl. 32 (1989) 305–329. | MR | Zbl | DOI

[7] J.L. Doob, Vol. 7 of Stochastic Processes. Wiley, New York (1953). | MR | Zbl

[8] D. Kremer and H.-P. Scheffler, Multivariate stochastic integrals with respect to independently scattered random measures on δ -rings. Preprint [math.PR] (2018) 28. | arXiv | MR | Zbl

[9] J. Lamperti, Semi-stable stochastic processes. Trans. Am. Math. Soc. 104 (1962) 62–78. | MR | Zbl | DOI

[10] T. Marquardt, Fractional Lévy processes with an application to long memory moving average processes. Bernoulli 12 (2006) 1099–1126. | MR | Zbl | DOI

[11] R.-F. Peltier and J. Lévy Véhel, Multifractional Brownian Motion: Definition and Preliminary Results. Research Report RR-2645, INRIA (1995). Available at https://hal.inria.fr/inria-00074045/file/RR-2645.pdf.

[12] B.S. Rajput and J. Rosiński, Spectral representations of infinitely divisible processes. Probab. Theory Related Fields 82 (1989) 451–487. | MR | Zbl | DOI

[13] J. Rosiński, On the structure of stationary stable processes. Ann. Probab. 23 (1995) 1163–1187. | MR | Zbl | DOI

[14] J. Rosiński and G. Samorodnitsky, Classes of mixing stable processes. Bernoulli 2 (1996) 365–377. | MR | Zbl | DOI

[15] G. Samorodnitsky and M.S. Taqqu, Stable non-Gaussian Random Processes. Stochastic Modeling. Chapman & Hall, New York (1994). Stochastic models with infinite variance. | MR | Zbl

[16] K. Sato, Lévy processes and infinitely divisible distributions. Vol. 68 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1999). Translated from the 1990 Japanese original, Revised by the author. | MR | Zbl

[17] S. Stoev, M.S. Taqqu, C. Park, G. Michailidis and J. Marron, Lass: a tool for the local analysis of self-similarity. Comput. Stat. Data Anal. 50 (2006) 2447–2471. | MR | Zbl | DOI

[18] K. Urbanik, Random measures and harmonizable sequences. Stud. Math. 31 (1968) 61–88. | MR | Zbl | DOI

[19] W. Willinger, M.S. Taqqu and A. Erramilli, A bibliographical guide to self-similar traffic and performance modeling for modern high-speed networks. Stochastics Networks: Theory and Applications. Oxford University Press (1996) 339–366. | Zbl

[20] A.M. Yaglom, An Introduction to the Theory of Stationary Random Functions. Courier Corporation (2004). | Zbl | MR

Cité par Sources :