Wavelet analysis for the solution to the wave equation with fractional noise in time and white noise in space
ESAIM: Probability and Statistics, Tome 25 (2021), pp. 220-257

Via Malliavin calculus, we analyze the limit behavior in distribution of the spatial wavelet variation for the solution to the stochastic linear wave equation with fractional Gaussian noise in time and white noise in space. We propose a wavelet-type estimator for the Hurst parameter of the this solution and we study its asymptotic properties.

DOI : 10.1051/ps/2021009
Classification : 60G15, 60H05, 60G18, 60F12
Keywords: Hurst parameter estimation, wavelets, fractional Brownian motion, stochastic wave equation, Stein–Malliavin calculus, central limit theorem
@article{PS_2021__25_1_220_0,
     author = {Assaad, Obayda and Tudor, Ciprian A.},
     title = {Wavelet analysis for the solution to the wave equation with fractional noise in time and white noise in space},
     journal = {ESAIM: Probability and Statistics},
     pages = {220--257},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {25},
     doi = {10.1051/ps/2021009},
     mrnumber = {4265264},
     zbl = {1478.60120},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ps/2021009/}
}
TY  - JOUR
AU  - Assaad, Obayda
AU  - Tudor, Ciprian A.
TI  - Wavelet analysis for the solution to the wave equation with fractional noise in time and white noise in space
JO  - ESAIM: Probability and Statistics
PY  - 2021
SP  - 220
EP  - 257
VL  - 25
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ps/2021009/
DO  - 10.1051/ps/2021009
LA  - en
ID  - PS_2021__25_1_220_0
ER  - 
%0 Journal Article
%A Assaad, Obayda
%A Tudor, Ciprian A.
%T Wavelet analysis for the solution to the wave equation with fractional noise in time and white noise in space
%J ESAIM: Probability and Statistics
%D 2021
%P 220-257
%V 25
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ps/2021009/
%R 10.1051/ps/2021009
%G en
%F PS_2021__25_1_220_0
Assaad, Obayda; Tudor, Ciprian A. Wavelet analysis for the solution to the wave equation with fractional noise in time and white noise in space. ESAIM: Probability and Statistics, Tome 25 (2021), pp. 220-257. doi: 10.1051/ps/2021009

[1] P. Abry, P. Flandrin, M.S. Taqqu and D. Veitch, Self-similarity and long range dependence through the wavelet lens. Long-range dependence: Theory and Applications, edited by P. Doukhan, G. Oppenheim, M.S. Taqqu. Birhäuser (2003). | MR | Zbl

[2] R. Balan and C.A. Tudor , The stochastic heat equation with fractional-colored noise: existence of the solution. ALEA Lat. Am. J. Probab. Math. Stat. 4 (2008) 57–87. | MR | Zbl

[3] R. Balan and C.A. Tudor, Stochastic heat equation with multiplicative fractional-colored noise. J. Theor. Probab. 23 (2010) 834–870. | MR | Zbl | DOI

[4] R.M. Balan and C.A. Tudor, The stochastic wave equation with fractional colored noise: a random field approach. Stoch. Process. Appl. 120 (2010) 2468–2494. | MR | Zbl | DOI

[5] J.-M. Bardet, Statistical study of the wavelet analysis of fractional Brownian motion. IEEE Trans. Inform. Theory 48 (2002) 991–999. | MR | Zbl | DOI

[6] J.-M. Bardet, G. Lang, G. Oppenheim, Georges, A. Philippe, S. Stoev and M.S. Taqqu, Murad, Semi-parametric estimation of the long-range dependence parameter: a survey. Theory and applications of long-range dependence. Birkhäuser Boston, Boston, MA (2003) 557–577. | MR | Zbl

[7] J.-M. Bardet and C.A. Tudor, A wavelet analysis of the Rosenblatt process: chaos expansion and estimation of the self-similarity parameter. Stoch. Process. Appl. 120 (2010) 2331–2362. | MR | Zbl | DOI

[8] I. Cialenco, Statistical inference for SPDEs: an overview. Stat. Inference Stoch. Process. 21 (2018) 309–329. | MR | Zbl | DOI

[9] J. Clarke De La Cerda, C.A. Tudor, Hitting probabilities for the stochastic wave equation with fractional colored noise. Rev. Mat. Iberoam. 30 (2014) 685–709. | Zbl | MR | DOI

[10] R.C. Dalang and M. Sanz-Solé, Hölder-Sobolev regularity of the solution to the stochastic wave equation in dimension three. Memoirs Am. Math. Soc. 199 (2009) 1–70. | MR | Zbl | DOI

[11] P. Flandrin, Wavelet analysis and synthesis of fractional Brownian motion. IEEE Trans. Inform. Theory 38 (1992) 910–917. | MR | Zbl | DOI

[12] M. Khalil and C.A. Tudor, Correlation structure, quadratic variations and parameter estimation for the solution to the wave equation with fractional noise. Electr. J. Stat. 12 (2018) 3639–3672. | MR | Zbl

[13] M. Kleptsyna and A. Le Breton, Statistical analysis of the fractional Ornstein-Uhlenbeck type process. Stat. Inference Stoch. Processes 5 (2002) 229–241. | MR | Zbl | DOI

[14] Yu.A. Kutoyants, Statistical Inference for Ergodic Diffusion Processes. Springer Series in Statistics. Springer (2004). | MR | Zbl

[15] Y. Meyer, F. Sellan and M.S. Taqqu, Wavelets, generalized white noise and fractional integration: the synthesis of fractional Brownian motion. J. Fourier Anal. Appl. 5 (2008) 465–494. | MR | Zbl | DOI

[16] I. Nourdin and G. Peccati, Normal Approximations with Malliavin Calculus From Stein ’s Method to Universality. Cambridge University Press (2012). | MR | Zbl | DOI

[17] D. Nualart, Malliavin Calculus and Related Topics, 2nd ed. Springer (2006). | MR | Zbl

[18] D. Nualart and G. Peccati, Central limit theorems for sequences of multiple stochastic integrals. Ann. Probab. 33 (2005) 177–193. | MR | Zbl | DOI

[19] Ptg. Peccati and C.A. Tudor, Gaussian limits for vector-valued multiple stochastic integrals. Séminaire de Probabilités XXXIV (2004) 247–262. | MR | Zbl

[20] B.L.S. Praksa Rao, Semimartingales and their Statistical Inference. Chapman and Hall (1999). | MR | Zbl

[21] B.L.S. Prakasa Rao, Statistical inference for fractional diffusion processes. Wiley Series in Probability and Statistics. Chichester, John Wiley & Sons (2010). | MR | Zbl

[22] R. Shevchenko, M. Slaoui and C.A. Tudor, Generalized k -variations and Hurst parameter estimation for the fractional wave equation via Malliavin calculus. J. Statist. Plann. Inference 207 (2020) 155–180. | MR | Zbl | DOI

[23] S. Torres, C.A. Tudor and F. Viens, Quadratic variations for the fractional-colored stochastic heat equation. Electr. J. Probab. 19 (2014) 76. | MR | Zbl

[24] C.A. Tudor, Analysis of variations for self-similar processes. A stochastic calculus approach. Probability and its Applications (New York). Springer, Cham (2013). | MR | Zbl

[25] C.A. Tudor and F.G. Viens, Statistical aspects of the fractional stochastic calculus. Ann. Statist. 35 (2007) 1183–1212. | MR | Zbl | DOI

Cité par Sources :

Supported by MATHAMSUD project SARC (19-MATH-06) and by Labex CEMPI (ANR-11-LABX-0007-01).