Variable bandwidth kernel regression estimation
ESAIM: Probability and Statistics, Tome 25 (2021), pp. 55-86

In this paper we propose a variable bandwidth kernel regression estimator for i.i.d. observations in ℝ2 to improve the classical Nadaraya-Watson estimator. The bias is improved to the order of O($$4) under the condition that the fifth order derivative of the density function and the sixth order derivative of the regression function are bounded and continuous. We also establish the central limit theorems for the proposed ideal and true variable kernel regression estimators. The simulation study confirms our results and demonstrates the advantage of the variable bandwidth kernel method over the classical kernel method.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/ps/2021003
Classification : 62G07, 62E20, 62H12
Keywords: Kernel regression estimation, variable bandwidth, bias reduction, central limit theorem
@article{PS_2021__25_1_55_0,
     author = {Nakarmi, Janet and Sang, Hailin and Ge, Lin},
     title = {Variable bandwidth kernel regression estimation},
     journal = {ESAIM: Probability and Statistics},
     pages = {55--86},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {25},
     doi = {10.1051/ps/2021003},
     mrnumber = {4224733},
     zbl = {1466.62286},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ps/2021003/}
}
TY  - JOUR
AU  - Nakarmi, Janet
AU  - Sang, Hailin
AU  - Ge, Lin
TI  - Variable bandwidth kernel regression estimation
JO  - ESAIM: Probability and Statistics
PY  - 2021
SP  - 55
EP  - 86
VL  - 25
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ps/2021003/
DO  - 10.1051/ps/2021003
LA  - en
ID  - PS_2021__25_1_55_0
ER  - 
%0 Journal Article
%A Nakarmi, Janet
%A Sang, Hailin
%A Ge, Lin
%T Variable bandwidth kernel regression estimation
%J ESAIM: Probability and Statistics
%D 2021
%P 55-86
%V 25
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ps/2021003/
%R 10.1051/ps/2021003
%G en
%F PS_2021__25_1_55_0
Nakarmi, Janet; Sang, Hailin; Ge, Lin. Variable bandwidth kernel regression estimation. ESAIM: Probability and Statistics, Tome 25 (2021), pp. 55-86. doi: 10.1051/ps/2021003

[1] I. Abramson, On bandwidth variation in kernel estimates – a square-root law. Ann. Statist. 10 (1982) 1217–1223. | MR | Zbl | DOI

[2] H.J. Bierens, Uniform consistency of kernel estimators of a regression function under generalized conditions. J. Am. Stat. Assoc. 79 (1983) 699–707. | MR | Zbl | DOI

[3] G. Collomb, Estimation non paramétrique de la régression par la méthode du noyau: propriété de convergence asymptotiquement normale indépendante Annales de le Facultédes sciences de I’Université de Clermont. Série Mathématiques des sciences de I’Université de Clermont. Série Mathématiques 65 (1977) 24–46. | MR | Zbl | Numdam

[4] U. Einmahl and D.M. Mason. An empirical process approach to the uniform consistency of kernel-type function estimators. J. Theor. Prob. 13 (2000) 1–37. | MR | Zbl | DOI

[5] U. Einmahl and D.M. Mason, Uniform in bandwidth consistency of kernel-type function estimators. Ann. Statist. 33 (2005) 1380–1403. | MR | Zbl | DOI

[6] T. Gasser and H.G. Müller, Estimating regression functions and their derivatives by the kernel method. Scand. J. Stat. 11 (1984) 171–185. | MR | Zbl

[7] E. Giné and H. Sang, Uniform asymptotics for kernel density estimators with variable bandwidths. J. Nonparametr. Stat. 22 (2010) 773–795. | MR | Zbl | DOI

[8] E. Giné and H. Sang, On the estimation of smooth densities by strict probability densities at optimal rates in sup-norm. IMS Collections, From Probability to Statistics and Back: High-Dimensional Models and Processes 9 (2013) 128–149. | MR | Zbl

[9] P. Hall, On the bias of variable bandwidth kernel estimators. Biometrika 77 (1990) 529–535. | MR | Zbl | DOI

[10] P. Hall and J.S. Marron, Variable window width kernel estimates of probability densities. Probab. Theory Related Fields 80 (1988) 37–49. Erratum: Probab. Theory Related Fields 91 (1988) 133. | MR | Zbl | DOI

[11] P. Hall, T. Hu and J.S. Marron, Improved variable window kernel estimates of probability densities. Ann. Statist. 23 (1995) 1–10. | MR | Zbl | DOI

[12] T. Hayfield and J.S. Racine, Nonparametric econometrics: The np package. J. Stat. Softw. Ann. Statist. 25 (2008) 5.

[13] M.C. Jones, I.J. Mckay and T.-C. Hu, Variable location and scale kernel density estimation. Ann. Inst. Statist. Math. 46 (1994) 521–535. | MR | Zbl | DOI

[14] I.J. Mckay, A note on bias reduction in variable kernel density estimates. Canad. J. Statist. 21 (1993a) 367–375. | MR | Zbl | DOI

[15] I.J. Mckay. Variable kernel methods in density estimation. Ph.D Dissertation, Queen’s University, 1993b.

[16] H. Müller and U. Stadtmüller, Variable bandwidth kernel estimators of regression curves. Ann. Statist. 15 (1987) 182–201. | MR | Zbl | DOI

[17] E.A. Nadaraya. On estimating regression. Theory Prob. Appl. 9 (1964) 141–142. | Zbl | DOI

[18] J. Nakarmi and H. Sang. Central limit theorem for the variable bandwidth kernel density estimators. J. Korean Stat. Soc. 47 (2018) 201–215. | MR | Zbl | DOI

[19] K. Noda, Estimation of a regression function by the Parzen kernel-type density estimators. Ann. Inst. Stat. Math. 28 (1976) 221–234. | MR | Zbl | DOI

[20] S.Y. Novak, A generalized kernel density estimator. (Russian) Teor. Veroyatnost. i Primenen. 44 (1999) 634–645; translation in Theory Probab. Appl. 44 (2000) 570–583. | Zbl | MR

[21] M. Rosenblatt, Conditional probability density and regression estimators. Multivar. Anal. II. Academic Press, New York (1969) 25–31. | MR

[22] M.G. Schimek, Smoothing and regression: Approaches, computation, and application. John Wiley & Sons (2000). | MR | Zbl | DOI

[23] G.R. Terrell and D. Scott, Variable kernel density estimation. Ann. Statist. 20 (1992) 1236–1265. | MR | Zbl | DOI

[24] L. Wasserman, All of nonparametric statistics. Springer (2006). | MR | Zbl

[25] G.S. Watson, Smooth regression analysis. Sankhya Ser. A 26 (1964) 359–372. | MR | Zbl

Cité par Sources :